Journal of Low Temperature Physics

, Volume 93, Issue 5–6, pp 1059–1067 | Cite as

Creation of quantized vortices at the lambda transition in liquid helium-4

  • P C Hendry
  • N S Lawson
  • R A M Lee
  • P V E McClintock
  • C D H Williams


A fast (∼ 3 ms) adiabatic expansion of a volume of liquid 4 He through the lambda transition is being used to study the nature of the transition and to model the cosmological false vacuum to true vacuum phase transition of the early universe. Preliminary results are reported showing that, in accordance with theoretical predictions by W H Zurek (Nature 317, 505; 1985), there is copious production of quantized vortex lines, which represent the superfluid analogue of cosmic strings. The line density after the expansion appears to decay in two distinct stages, with a fast decay being followed by a much slower one, in agreement with earlier work on the decay of quantum turbulence created in thermal counterflow. Extrapolation of the initial fast decay suggests an initial line density, immediately following the expansion, of ∼107 cm2. Smaller, but still substantial, vortex densities are also found to occur when the system is expanded from below the lambda transition, and the physical implications are discussed.


Vortex Cosmic String Vortex Line Fast Decay Line Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Donnelly,Quantized Vortices in Helium II, Cambridge University Press, 1991.Google Scholar
  2. 2.
    D.D. Awschalom and K.W. Schwarz,Phys. Rev. Lett. 52, 49 (1984).Google Scholar
  3. 3.
    J.T. Tough, inProgress in Low Temperature Physics, ed. D.F. Brewer, vol VIII, North-Holland, Amsterdam, 1982, pp 133–219.Google Scholar
  4. 4.
    G.A. Williams,J. Low Temp. Phys. 89, 91 (1992).Google Scholar
  5. 5.
    W.H. Zurek,Nature 317, 505 (1985); andActa Polonica to be published.Google Scholar
  6. 6.
    T.W.B. Kibble,J. Phys. A 9, 1387 (1976).Google Scholar
  7. 7.
    J. Tilley,Superfluidity and Superconductivity, Hilger, Bristol, 1986.Google Scholar
  8. 8.
    A. Vilenkin,Phys. Rep. 121, 263 (1985).Google Scholar
  9. 9.
    P.C. Hendry and P.V.E. McClintock,Cryogenics 27, 131 (1987).Google Scholar
  10. 10.
    H.E. Hall and W.F. Vinen,Proc. Roy. Soc. A238, 204 (1956).Google Scholar
  11. 11.
    K.W. Schwarz and J.R. Rozen,Phys. Rev. Lett. 66, 1898 (1991).Google Scholar
  12. 12.
    K.W. Schwarz,Phys. Rev. B 31, 5782 (1985).Google Scholar
  13. 13.
    W.F. Vinen,Proc. Roy. Soc. 242, 493 (1957).Google Scholar
  14. 14.
    M.R. Smith, R.J. Donnelly, N. Goldenfeld and W.F. Vinen, “Decay of vorticity in homogeneous turbulence”, to be published.Google Scholar
  15. 15.
    I. Chuang, N. Turok and B. Yurke,Phys. Rev. Lett. 66, 2472 (1991).Google Scholar
  16. 16.
    M.Y. Bowick, L. Chander, E.A. Schiff and A.M. Srivastava, “The cosmological Kibble mechanism in the laboratory: string formation in liquid crystals”, to be published.Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • P C Hendry
    • 1
  • N S Lawson
    • 1
  • R A M Lee
    • 1
  • P V E McClintock
    • 1
  • C D H Williams
    • 1
    • 2
  1. 1.School of Physics and MaterialsLancaster UniversityLancasterUK
  2. 2.Department of PhysicsUniversity of ExeterExeterUK

Personalised recommendations