Skip to main content
Log in

Phase transitions in the growth of4He films

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using a microscopic, variational approach we examine the growth of4He absorbed to graphite and alkali substrates. We find that superfluid layers are formed and their behavior as a function of coverage is closely related to the one of a purely two-dimensional superfluid. The growth of a new layer undergoes a phase transition from a cluster formation into the connected superfluid when the coverage is increased. Based on the important connection to the two-dimensional fluid we propose a microscopic theory of quantum vortices in4He films at zero temperature, in which single vortices are treated as quasiparticles. We calculate the energy needed to create the single vortex, vortex inertial mass, microscopic interaction between vortices and binding energy of the vortex-antivortex pair as a function of density. We predict that at the4He superfluid density less than about 0.037 Å2 the binding energy of the pair becomes negative, indicating a phase transition into a new state where vortex-antivortex pairs are spontaneously created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Donnelly,Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991).

    Google Scholar 

  2. V. Berezinskiľ, Sov. Phys. JETP32, 493 (1971).

    Google Scholar 

  3. J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181 (1973).

    Google Scholar 

  4. J. M. Kosterlitz and D. J. Thouless, Progr. Low Temp. Phys.VIIb, 373 (1978).

    Google Scholar 

  5. G. Agnolet, D. F. McQueeney, and J. D. Reppy, Phys. Rev. B39, 8934 (1989), and references therein.

    Google Scholar 

  6. B. E. Clements, E. Krotscheck, and H. J. Lauter, Phys. Rev. Lett.70, 1287 (1993).

    Google Scholar 

  7. B. E. Clements, J. L. Epstein, E. Krotscheck, and M. Saarela, Phys. Rev. B48, (1993), (in press).

  8. P. A. Crowell and J. D. Reppy, Phys. Rev. Lett.70, 3291 (1993).

    Google Scholar 

  9. P. J. Nacher and J. Dupont-Roc, Phys. Rev. Lett.67, 2966 (1991).

    Google Scholar 

  10. K. S. Ketola, S. Wang, and R. B. Hallock, Phys. Rev. Lett.68, 201 (1992).

    Google Scholar 

  11. J. Rutlege and P. Taborek, Phys. Rev. Lett.68, 2184 (1992).

    Google Scholar 

  12. L. Onsager, Nuovo Cimento Suppl.6, 249 (1949), (discussion on a paper by C.J. Gorter).

    Google Scholar 

  13. R. P. Feynman, inProgress in Low Temperature Physics, edited by C. J. Gorter (North Holland, Amsterdam, 1955), Vol. I, Chap. 2.

    Google Scholar 

  14. G. V. Chester, R. Metz, and L. Reatto, Phys. Rev.175, 275 (1968).

    Google Scholar 

  15. F. Dalfovo, G. Renversez, and J. Treiner, J. Low Temp. Phys.89, 425 (1993).

    Google Scholar 

  16. F. Dalfovo, J. Low Temp. Phys.89, 453 (1993).

    Google Scholar 

  17. C. M. Muirhead, W. Vinen, and R. Donnelly, Phil. Trans. R. Soc. Lond. A311, 433 (1984).

    Google Scholar 

  18. J.-M. Duan and A. J. Leggett, Phys. Rev. Lett.68, 1216 (1992).

    Google Scholar 

  19. J. Bardeen, G. Baym, and D. Pines, Phys. Rev.156, 207 (1967).

    Google Scholar 

  20. M. Saarela and F. V. Kusmartsev, inCondensed Matter Theories, edited by L. Blum and F. B. Malik (Plenum, New York, 1993), Vol. 8, p. 173.

    Google Scholar 

  21. G. Agnolet, private commonucation.

  22. J. M. Mochel and M. T. Chen,XX International Conference on Low Temperature Physics (Abstract H10-3), and Physica B (1993), in press.

  23. E. Feenberg,Theory of Quantum Liquids (Academic, New York, 1969).

    Google Scholar 

  24. E. Krotscheck and M. Saarela, Phys. Rep.232, 1 (1993).

    Google Scholar 

  25. E. Cheng, M. W. Cole, W. F. Saam, and J. Treiner, Phys. Rev. B46, 13967 (1992).

    Google Scholar 

  26. X. Wang and F. M. Gasparini, Phys. Rev. B38, 11245 (1988).

    Google Scholar 

  27. M. Saarela, inRecent Progress in Many Body Theories, edited by Y. Avishai (Plenum, New York, 1990), Vol. 2, p. 337.

    Google Scholar 

  28. M. Saarela and E. Krotscheck, J. Low Temp. Phys.90, 415 (1993).

    Google Scholar 

  29. J. C. Owen, Phys. Rev. Lett.47, 586 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saarela, M., Clements, B.E., Krotscheck, E. et al. Phase transitions in the growth of4He films. J Low Temp Phys 93, 971–985 (1993). https://doi.org/10.1007/BF00692043

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00692043

PACS numbers

Navigation