Acta Neuropathologica

, Volume 61, Issue 3–4, pp 178–182 | Cite as

Loss of intracortical myelinated fibers: A distinctive age-related alteration in the human striate area

  • P. Lintl
  • H. Braak
Original Works

Summary

The amount of myelin in Gennari's stripe in the human striate cortex has been measured in normal individuals ranging in age from 18 to 96 years. From the third decade onward, the amount of myelin in this intracortical plexus is gradually reduced with advancing age.

Key words

Ageing Demyelination Line of Gennari Striate area Isocortex Man 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beck EC, Dustman RE, Blusewicz MJ, Cannon WG (1979) Cerebral evoked potentials and correlated neuropsychological changes in the human brain during aging: A comparison of alcoholism and aging. In: Ordy JM, Brizzee KR (eds) Aging, vol 10. Sensory systems and communication in the elderly. Raven Press, New York, pp 203–226Google Scholar
  2. Braak H (1979) Spindle-shaped appendages of IIIab-pyramids filled with lipofuscin: A striking pathological change of the senescent human isocortex. Acta Neuropathol (Berl) 46:197–202Google Scholar
  3. Braak H (1980) Architectonics of the human telencephalic cortex. In: Braitenberg V, Barlow HB, Bizzi, E, Florey E, Grüsser OJ, van der Loos H (eds) Studies of brain function, vol 4. Springer, Berlin Heidelberg New York, pp 1–147Google Scholar
  4. Braak H, Bumann K (1981) Morphological changes of the third isocortical layer in the senescent brain and in alzheimer's disease. Gerontology 27:101Google Scholar
  5. Braak E, Braak H, Strenge H, Muhtaroglu U (1980) Age-related alterations of the proximal axon segment in lamina IIIabpyramidal cells of the human isocortex. A Golgi and fine structural study. J Hirnforsch 21:531–535Google Scholar
  6. Braitenberg V (1962) A note on myeloarchitectonics. J Comp Neurol 118:141–156Google Scholar
  7. Braitenberg V (1978) Cortical architectonics: General and areal. In: Brazier MAB, Pesche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 443–465Google Scholar
  8. Braunmühl A von (1957) Alterserkrankungen des Zentralnerven-systems. Senile Involution. Senile Demenz. Alzheimer'sche Krankheit. In: Lubarsch O, Henke F, Rössle R (Hrsg) Handbuch der speziellen pathologischen Anatomie und Histologie, Bd 13/1A. Springer, Berlin Göttingen Heidelberg S 337–539Google Scholar
  9. Brizzee KR, Ordy JM (1981a) Cellular features, regional accumulation, and prospects of modification of age pigments in mammals. In: Sohal RS (ed) Age pigments. Elsevier, Amsterdam New York Oxford, pp 101–155Google Scholar
  10. Brizzee KR, Ordy JM (1981b) Age pigments, cell loss and functional implications in the brain. In: Sohal RS (ed) Age pigments. Elsevier, Amsterdam New York Oxford, pp 317–334Google Scholar
  11. Brunetti M, Giamberardino L di, Porcellati G, Droz B (1981) Contribution of axonal transport to the renewal of myelin phospholipids in peripheral nerves. II. Biochemical study. Brain Res 219:73–84Google Scholar
  12. Clark WE LeGros, Sunderland S (1939) Structural changes in the isolated visual cortex. J Anat 73:563–574Google Scholar
  13. Corbin KB, Gardner ED (1937) Decrease in number of myelinated fibers in human spinal root with age. Anat Rec 68:63–74Google Scholar
  14. Corso JF (1971) Sensory processes and age effects in normal adults. J Gerontol 26:90–105Google Scholar
  15. Droz B, Giamberardino L di, Koenig HJ (1981) Contribution of axonal transport to the renewal of myclin phospholipids in peripheral nerves. I. Quantitative radioautographic study. Brain Res 219:57–71Google Scholar
  16. Fisken RA, Garey LJ, Powell TPS (1975) The intrinsic, association and commissural connections of area 17 of the visual cortex. Philos Trans R Soc London [Biol] 272:487–536Google Scholar
  17. Friede KL, Samorajski T (1968) Myelin formation in the sciatic nerve of the rat. A quantitative electron-microscopic, histochemical, and radioautographic study. J Neuropathol Exp Neurol 27: 546–570Google Scholar
  18. Haley JE, Ledeen RW (1979) Incorporation of axonally transported substances into myelin lipids. J Neurochem 32:735–742Google Scholar
  19. Heslinga FJM, Deierkauf FA (1962) The action of formaldehyde on human brain lipids. J Histochem Cytochem 10:704–709Google Scholar
  20. Kaes T (1907) Die Großhirnrinde des Menschen in ihren Maßen und in ihrem Fasergehalt. fischer, JenaGoogle Scholar
  21. Mann DMA, Yates PO (1973) Polyploidy in the human nervous system. I. The DNA content of neurones and glia of the cerebellum. J Neurol Sci 18:183–196Google Scholar
  22. Mann DMA, Yates PO, Stamp JE (1978) The relationship between lipofuscin pigment and ageing in the human nervous system. J Neurol Sci 37:83–93Google Scholar
  23. Rösler B, Kemnitz P, Willgeroth C (1981) Elektronenmikroskopischmorphometrische Untersuchungen über den Lipofuscingehalt der Pyramidenzellen der Laminae III und V in der Area 10 (Brodmann) des Lobus frontalis cerebri des Menschen in Verschiedenen Altersstufen. J Hirnforsch 22:621–627Google Scholar
  24. Rumsby MG (1978) Organization and structure in central-nerve myelin, Biochem Soc Trans 6:448–462Google Scholar
  25. Scheibel ME, Lindsay RD, Tomiyasu U, Scheibel AB (1975) Progressive dendritic changes in aging human cortex. Exp Neurol 47:392–403Google Scholar
  26. Scholtz CL (1977) Quantitative histochemistry of myelin using Luxol fast blue MBS. Histochem J, 9:759–765Google Scholar
  27. Scholtz CL, Swettenham K, Brown A, Mann DMA (1981) A histoquantitative study of the striate cortex and lateral geniculate body in normal, blind and demented subjects. Neuropathol Appl neurobiol 7:103–114Google Scholar
  28. Schroeker K (1939) eine weitere Verbesserung meiner Markscheidenfärbung am Gefrierschnitt. Z Ges Neurol 166:588–593Google Scholar
  29. Spritz N, Singh H, Geyer B (1973) Myelin from human peripheral nerves. Quantitative and qualitative studies in two age groups. Clin Invest 52:520–523Google Scholar
  30. Straumanis JJ, Shagass, C, Schwartz M (1965) Visually evoked cerebral response changes associated with chronic brain syndromes and ageing. J Gerontol 20:498–506Google Scholar
  31. Treff WM (1963) Interferometrische Dickenbestimmung von Hirnschnitten. J Hirnforsch 6:71–78Google Scholar
  32. Weinberg HJ, Spencer PS (1976) Studies of the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production. Brain Res 113:363–378Google Scholar
  33. Yakovlev PJ, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford Edinburgh, pp 3–70Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • P. Lintl
    • 1
  • H. Braak
    • 1
  1. 1.Zentrum der MorphologieUniversität FrankfurtFrankfurt a. M.Germany

Personalised recommendations