Celestial Mechanics and Dynamical Astronomy

, Volume 58, Issue 3, pp 297–308 | Cite as

Extension of the solution of Kepler's equation to high eccentricities

  • Sandro Da Silva Fernandes


The classic Lagrange's expansion of the solutionE(e, M) of Kepler's equation in powers of eccentricity is extended to highly eccentric orbits, 0.6627 ... <e<1. The solutionE(e, M) is developed in powers of (e−e*), wheree* is a fixed value of the eccentricity. The coefficients of the expansion are given in terms of the derivatives of the Bessel functionsJ n (ne). The expansion is convergent for values of the eccentricity such that |e−e*|<ρ(e*), where the radius of convergence ρ(e*) is a positive real number, which is calculated numerically.

Key words

Kepler's equation Lagrange's series 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Tisserand, F.: 1960,Traité de Mécanique Céleste, Gauthier-Villars, Paris (re-edition).Google Scholar
  2. Wintner, A.: 1941,Analytical Foundations of Celestial Mechanics, Princeton University Press, New Jersey.Google Scholar
  3. Kovalevsky, J.: 1967,Introduction to Celestial Mechanics, D. Reidel Publ. Co., Dordrecht.Google Scholar
  4. Odell, A.W. and Gooding, R.H.: 1986,Celes. Mech. 38, 307.Google Scholar
  5. Cayley, A.: 1861,Mem. Roy. Astron. Soc. 29, 191.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Sandro Da Silva Fernandes
    • 1
  1. 1.Departamento de Mecânica do Vôo e OrbitalInstituto Tecnológico de AeronáuticaSão José dos Campos - SPBrazil

Personalised recommendations