Celestial Mechanics and Dynamical Astronomy

, Volume 58, Issue 3, pp 237–244 | Cite as

Keplerian expansions in terms of Henrard's practical variables

  • Sławomir Breiter
  • Gilles Metris


Formulae for the Keplerian expansions in terms of Henrard's “practical variables” are given. Two different methods were applied: one using the Bessel functions and one based on the Lie transforms. The former involves less series products, but the latter is more flexible and universal.

Key words

Keplerian expansions Henrard variables Lie transforms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksenov, E. P.: 1986,Special Functions in Celestial Mechanics (in Russian), Nauka, MoscowGoogle Scholar
  2. Brouwer, D. and Clemence, G.: 1961,Methods of Celestial Mechanics, Academic Press, New York - LondonGoogle Scholar
  3. Claes, H., Henrard, J., Zune, J. M., Moons, M. and Lemaitre, A.: 1988, “Guide d'utilisation du manipulateur de séries [MS]”, Internal publication, Departement of Mathematics, Facultés de Namur.Google Scholar
  4. Deprit, A.: 1969, ‘Canonical transformations depending on a small parameterrs,Celest. Mech. 1, 12–30Google Scholar
  5. Deprit, A., Henrard, J., Rom, A.: 1971, ‘Analytical Lunar Ephemeris’,Astron. Astrophys. 10, 257–269Google Scholar
  6. Henrard, J.: 1970, ‘Perturbation technique in the theory of nonlinear oscillations and in celestial mechanics’, Boeing Scientific Research Laboratories, Mathematical and Information Sciences Report No 44Google Scholar
  7. Henrard, J.: 1974, ‘Virtual Singularities in the Artificial Satellite Theory’,Celest. Mech. 10, 437–449Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Sławomir Breiter
    • 1
  • Gilles Metris
    • 2
  1. 1.Astronomical Observatory of A. Mickiewicz UniversityPoznańPoland
  2. 2.Observatoire de la Côte d'AzurGrasseFrance

Personalised recommendations