Skip to main content
Log in

Fine structure and metabolic adaptation of red and white muscles in tuna

  • Main Articles
  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Synopsis

An electron microscopic study of the red and white muscle fibres in the trunk musculature of the Kawakawa tuna (Euthynnus affinis) was carried out with a view to correlating their structure with metabolic adaptation. The red fibres which are considerably smaller in diameter (34.58 μm ± 6.16 S.D.) are characterized by their high content of myoglobin, mitochondria, lipid droplets and glycogen granules. The white fibres which are relatively larger in diameter (66.03 μm ± 11.59 S.D.) are characterized by their lack of myoglobin, low mitochondria) density, high content of glycogen granules and the conspicuous absence of lipid droplets. The characteristics in fine structure of the two fibre types are discussed in the light of their metabolic adaptation, the red fibres as being adapted for long term cruising movement utilizing lipid as the main source of energy and the white fibres for short bursts of activity metabolizing glycogen as the chief fuel.

The tuna, with the acquisition of the counter-current heat exchange system which provides for the retention of the heat generated from high substrate oxidation in the red muscle and an efficient respiratory system, it is postulated, is well adapted for high speed sustained swimming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Ballantyne, J. S. & J. C. George. 1977. The effects of long chain fatty acids on the respiration of liver mitochondria of cold and warm acclimated rat, pigeon and trout. J. Thermal Biol. (in press)

  • Ballantyne, J. S. & J. C. George. 1978. An ultrastructural and histological analysis of the effects of cold acclimation on vertebrate skeletal muscle. J. Thermal Biol. (in press)

  • Barrett, I. & F. J. Hester, 1964. Body temperature of yellowfin and skipjack tunas in relation to sea surface temperature. Nature (London) 203: 96–97.

    Google Scholar 

  • Bilinski, E. 1963. Utilization of lipids by fish. 1. Fatty acid oxidation by tissue slices from dark and white muscle of rainbow trout (Salmo gairdneri). Can. J. Biochem. Physiol. 41:107–112.

    Google Scholar 

  • Bilinski, E. 1974. Biochemical aspects of fish swimming. pp. 239–288. In: (D. C. Malins & J. R. Sargent ed.) Biochemical and biophysical perspectives in marine biology Vol. 1. Academic Press, New York.

    Google Scholar 

  • Bilinski, E. & R. E. E. Jonas. 1964. Utilization of lipids by fish. II. Fatty acid oxidation by a particulate fraction from lateral line muscle. Can. J. Biochem. 42: 345–352.

    Google Scholar 

  • Bokdawala, F. D. & J. C. George. 1967a. A histochemical study of the red and white fibres of the carp,Cirrhina mrigala. J. Anim. Morph. Physiol. 14: 60–68.

    Google Scholar 

  • Bokdawala, F. D. & J. C. George. 1967b. A quantitative study of fat, glycogen, lipase and succinic dehydrogenase in fish muscle. J. Anim. Morph. Physiol. 14: 223–230.

    Google Scholar 

  • Bone, Q. 1966. On the function of the two types of myotomal muscle fibre in elasmobranch fish. J. mar. biol. Ass. U.K. 46: 321–349.

    Google Scholar 

  • Carey, F. G. 1973. Fishes with warm bodies. Sci. Am. 228: 36–44.

    Google Scholar 

  • Carey, F. G. K. D. Lawson. 1973. Temperature regulation in bluefin tuna. Comp. Biochem. Physiol. 44A: 375–392.

    Google Scholar 

  • Carey, F. G. & J. M. Teal. 1969a. Mako and porbeagle: warmbodied sharks. Comp. Biochem. Physiol. 28: 199–204.

    Google Scholar 

  • Carey, F. G. & J. M. Teal. 1969b. Regulation of body temperature by the blue fin tuna. Comp. Biochem. Physiol. 28: 205–213.

    Google Scholar 

  • Dean, J. M. 1969. The metabolism of tissues of thermally acclimated trout (Salmo gairdneri). Comp. Biochem. Physiol. 29: 185–196.

    Google Scholar 

  • Fontaine, M. & J. Hatey. 1953. Contribution à l'etude du métabolisme glucidique du saumon (Salmo salar L.) à diverses étapes de son développement et de ses migrations. Physiologia Comp. Oecol. 3: 37–52.

    Google Scholar 

  • George, J. C. 1962. A histophysiological study of the red and white muscles of the mackerel. Am. Midl. Nat. 68: 487–494.

    Google Scholar 

  • George, J. C. & F. D. Bokdawala. 1964. Cellular organizatOphiocephalusion and fat utilization in fish muscle. J. Anim. Morph. Physiol. 11: 124–132.

    Google Scholar 

  • Gordon, M. S. 1968. Oxygen consumption of red and white muscles from tuna fishes. Science 159: 87–90.

    Google Scholar 

  • Hidaka, T. & N. Toida. 1969a. Biophysical and mechanical properties of red and white muscle fibres in fish. J. Physiol. (London) 201: 49–59.

    Google Scholar 

  • Hidaka, T. & N. Toida. 1969b. Neuromuscular transmission and excitation-contraction coupling in fish red muscle. Jap. J. Physiol. 19: 130–142.

    Google Scholar 

  • Idler, D. R. & W. A. Clemens. 1959. The energy expenditure of Fraser River sockeye salmon during the spawning migration to Chilko and Stuart Lakes. Int. Pac. Salmon Fish. Progr. Rep. 1–80.

  • Johnston, I. A. & B. Tota. 1974. Myofrbrillar ATPase in the various red and white trunk muscles in the tunny (Thunnus thynnus L.) and the tub gurnard (Trigla lucerna L.). Comp. Biochem. Physiol. 49B: 367–373.

    Google Scholar 

  • Kilarski, W. 1967. The fine structure of striated muscles in teleosts. Z. Zellforsch. 79: 562–580.

    Google Scholar 

  • Kryvi, H. & G. K. Totland. 1977. Histochemical studies with microphotometric determinations of the lateral muscles in the sharksEtmopterus spinax andGaleus melastomus. J. mar. biol. Ass. U.K. 57: 261–271.

    Google Scholar 

  • Modigh, M. & B. Tota. 1975. Mitochondrial respiration in the ventricular myocardium and in the white and deep red myotomal muscles of juvenile tuna fish (Thunnus thynnus L.). Acta. Physiol. Scand. 93: 289–294.

    Google Scholar 

  • Nag, A. 1972. Ultrastructure and adenosine triphophatase activity of red and white muscle fibers of the caudal region of a fish,Salmo gairdneri. J. Cell Biol. 55: 42–57.

    Google Scholar 

  • Nakajima, Y. 1969. Fine structure of red and white muscle fibers and their neuromuscular junctions in the snake fish (Ophiocephalus argus). Tissue & Cell 1: 229–246.

    Google Scholar 

  • Neill, W. H. & E. D. Stevens. 1974. Thermal inertia versus thermoregulation in ‘warm’ turtles and tunas. Science 194: 1008–1010.

    Google Scholar 

  • Neill, W. H., R. K. C. Chang & A. E. Dizon. 1976. Magnitude and ecological implications of thermal inertia in skipjack tuna,Katsuwonus pelamis (Linnaeus). Env. Biol. Fish. 1: 61–80.

    Google Scholar 

  • Nishihara, H. 1966. Some observations on the relationship between structure and function in fish red and white muscles. Proc. 6th Inter. Congr. Elect. Micr. Kyoto. 693–694.

  • Patterson, S., I. A. Johnston & G. Goldspink. 1975. A histochemical study of the lateral muscles of five teleost species. J. Fish. Biol. 7: 159–166.

    Google Scholar 

  • Rayner, M. D. & M. J. Keenan. 1967. Role of red and white muscles in the swimming of the skipjack tuna. Nature 214: 392–393.

    Google Scholar 

  • Reynolds, E. S. 1963. The use of lead citrate at high pH as an election opaque stain in electron microscopy. J. Cell Biol. 17: 208–212.

    Google Scholar 

  • Stevens, E. D. 1972. Some aspects of gas exchange in tuna. J. exp. Biol. 56: 809–823.

    Google Scholar 

  • Stevens, E. D. & F. E. J. Fry. 1961. Brain and muscle temperatures in ocean caught and captive skipjack tuna. Comp. Biochem. Physiol. 38A: 203–211.

    Google Scholar 

  • Stevens, E. D. & W. H. Neill. 1977. Body temperature relations of tunas, especially skipjack. In: W. S. Hoar & D. J. Randall (ed.) Fish Physiology. (in press)

  • Yamamoto T. 1972. Electrical and mechanical properties of the red and white muscles in the silver carp. J. Exp. Biol. 57: 551–567.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, J.C., Don Stevens, E. Fine structure and metabolic adaptation of red and white muscles in tuna. Environ Biol Fish 3, 185–191 (1978). https://doi.org/10.1007/BF00691942

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691942

Keywords

Navigation