Skip to main content
Log in

Behaviour of the SMF method for the numerical integration of satellite orbits

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The SMF algorithms were recently developed by the authors as a multistep generalization of the ScheifeleG-functions one-step method. Like the last, the proposed codes integrate harmonic oscillations without truncation error and the perturbing parameter appears as a factor of that error when integrating perturbed oscillations. Therefore they seemed to be convenient for the accurate integration of orbital problems after the application of linearizing transformations, such as KS or BF. In this paper we present several numerical experiments concerning the propagation of Earth satellite orbits, that illustrate the performance of the the SMF method. In general, it provides greater accuracy than the usual standard algorithms for similar computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battin, R. H.: 1987,An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Professional Study Series.

  • Bettis, D. G.: 1970a, Numerical integration of products of Fourier and ordinary polynomials,Numer. Math. 14, 421–434.

    Google Scholar 

  • Bettis, D. G.: 1970b, Stabilization of finite difference methods of numerical integration,Celest. Mech. 2, 282–295.

    Google Scholar 

  • Burdet, C. A.: 1969, Le mouvement Keplerien et les oscillateurs harmoniques,J. reine und angew. Math. 238, 71.

    Google Scholar 

  • Dormand J. R. and Prince P. J.: 1978, New Runge-Kutta algorithms for numerical simulation in Dynamical Astronomy,Celest. Mech. 18, 223–232.

    Google Scholar 

  • Ferrándiz, J. M.: 1986, A new set of canonical variables for orbit calculation, In:Proceedings of the Second International Symposium on Spacecraft Flight Dynamics, ESA SP-255, pp. 361–364, Darmstadt, Germany.

  • Ferrándiz, J. M.: 1988, A general canonical transformation increasing the number of variables with application to the two-body problem,Celest. Mech. 41, 345–357.

    Google Scholar 

  • Ferrándiz, J. M. and Sansaturio, M. E.: 1989, Elemento de tiempo en variables de Ferrándiz,Actas XIV Jornados Hispano-Lusas de Matemáticas, Vol. III, 1231–1235.

    Google Scholar 

  • Ferrándiz, J. M., Sansaturio, M. E. and Pojman, J. R.: 1992a, Increased Accuracy of Computation in the Main Satellite Problem through Linearization Methods,Celest. Mech. & Dyn. Astron. 53, 347–363.

    Google Scholar 

  • Ferrándiz, J. M., Sansaturio, M. E. and Vigo, J.: 1991, Long time predictions of satellite orbits by numerical integration, in Roy, A. E. (ed.),Predictability, Stability and Chaos in N -Body Dynamical Systems, NATO ASI Series B Vol. 272, pp. 387–394, Plenum Publishing Corporation.

  • Ferrándiz, J. M., Sansaturio, M. E. and Vigo, J.: 1992b, On the accurate numerical computation of highly eccentric orbits, in: Diehl, R. E.et al. (eds.),Advances in the Astronautical Sciences, Vol. 79, pp. 1185–1204, Univelt Inc., San Diego.

    Google Scholar 

  • Fox, K.: 1984, Numerical integration of the equations of motion of Celestial Mechanics,Celest. Mech. 33, 127–142.

    Google Scholar 

  • Hairer, E., Nørsett, S. P. and Wanner, G.: 1987,Solving Ordinary Differential Equations I, Springer, Berlin.

    Google Scholar 

  • Herrick, S.: 1965, Universal variables,Astron. J. 70, 309–315.

    Google Scholar 

  • Kinoshita, H. and Nakai, H.: 1989, Numerical integration methods in Dynamical Astronomy,Celest. Mech. 45, 231–244.

    Google Scholar 

  • Martín, P.: 1992,Extensiones del método de Scheifele para la integración numérica de osciladores y sistemas lineales perturbados, Ph.D. Dissertation, University of Valladolid (Spanish language). Available from the author.

  • Martín, P. and Ferrándiz, J. M.: 1993, Relative behaviour of special algorithms for the numerical integration of satellite orbits,Advances in the Astronautical Sciences 82, 765–782.

    Google Scholar 

  • Martín, P. and Ferrándiz, J. M.: 1995, A family of multistep numerical methods based on the ScheifeleG-functions to integrate perturbed oscillators,SIAM Journal on Numerical Analysis (in press).

  • Montenbruck, O.: 1992, Numerical integration methods for orbital motion,Celest. Mech. & Dyn. Astron. 53, 59–69.

    Google Scholar 

  • Nacozy, P.: 1981, Time elements in Keplerian orbital elements,Celest. Mech. 23, 173–198.

    Google Scholar 

  • Scheifele, G.: 1971, On numerical integration of perturbed linear oscillating systems,ZAMP 22, 186–210.

    Google Scholar 

  • Steffensen, J. F.: 1955a, On the differential equations of Hill in the theory of the motion of the Moon,Acta Mathematica 93, 169–177.

    Google Scholar 

  • Steffensen, J. F.: 1955b, On the differential equations of Hill in the theory of the motion of the Moon (II),Acta Mathematica 95, 25–37.

    Google Scholar 

  • Steffensen, J. F.: 1956, On the restricted problem of three bodies,Mat. Fys. Medd. Dan. Vid. Selsk. 30 (18).

  • Stiefel, E. L. and Bettis, D. G.: 1969, Stabilization of Cowell's Method,Numer Math. 13, 154–175.

    Google Scholar 

  • Stiefel, E. L. and Scheifele, G.: 1971,Linear and Regular Celestial Mechanics, Springer, New York.

    Google Scholar 

  • Stumpff, K.: 1959,Himmelsmechanik, VEB Deutscher Verlag der Wissenschaften, Berlin.

    Google Scholar 

  • Szebehely, V. G.: 1976, Lectures on linearizing transformations, inLong-Time Predictions in Dynamics, pp. 17–42, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Taff, L. G.: 1985,Celestial Mechanics, Wiley-Interscience, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín, P., Ferrándiz, J.M. Behaviour of the SMF method for the numerical integration of satellite orbits. Celestial Mech Dyn Astr 63, 29–40 (1995). https://doi.org/10.1007/BF00691913

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691913

Key words

Navigation