Advertisement

Acta Neuropathologica

, Volume 60, Issue 3–4, pp 207–216 | Cite as

The effects of 5-minute ischemia in mongolian gerbils: I. Blood-brain barrier, cerebral blood flow, and local cerebral glucose utilization changes

  • R. Suzuki
  • T. Yamaguchi
  • T. Kirino
  • F. Orzi
  • I. Klatzo
Original Works

Summary

Changes in morphology, behavior of the blood-brain barrier (BBB), regional cerebral blood flow (rCBF), and local cerebral glucose utilization (LCGU) were assessed and correlated in Mongolian gerbils following 5 min cerebral ischemia, produced by bilateral clamping of the common carotid arteries. The morphological changes were confined to the hippocampus and revealed a conspicuously delayed destruction of the CA1 neurons, occurring after 3 days. Following release of carotid occlusions, there were two separate openings of the BBB. One, occurring shortly after recirculation, was associated with focal hyperemia in the cerebral cortex, hippocampus and basal ganglia; the second opening was observed after several days and was associated with severe neuronal destruction in the CA1 sector. Correlation of quantitative and qualitative rCBF assays with14C-deoxyglucose autoradiographic observations indicated an uncoupling between blood flow and glucose metabolism, observed in the hippocampus at 10 min after recirculation. The described changes provide a further insight into the post-ischemic events which determine the outcome of ischemic injury.

Key words

Cerebral ischemia Blood-brain barrier Cerebral blood flow Glucose utilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bubis JJ, Fujimoto T, Ito U, Mrsulja BJ, Spatz M, Klatzo I (1976) Experimental cerebral ischemia in Mongolian gerbils. V. Ultrastructural changes in H3 sector of the hippocampus. Acta Neuropathol (Berl) 36:285–294Google Scholar
  2. Diemer HN, Siemkowicz E (1980a) Increased 2-deoxyglucose uptake in hippocampus, globus pallidus and substantia nigra after cerebral ischemia. Acta Neurol Scand 61:56–63Google Scholar
  3. Diemer NH, Siemkowicz E (1980b) Regional glucose metabolism and nerve cell damage after cerebral ischemia in normo- and hypoglycemic rats. In: Spatz M, Mrsulja BB, Rakic L, Lust D (eds) Circulatory and developmental aspects of brain metabolism. Plenum Press, New York London, pp 23–32Google Scholar
  4. Ginsberg MD, Reivich M, Giandomenico A, Greenberg JH (1977) Local glucose utilization in acute focal cerebral ischemia: local dysmetabolism and diaschisis. Neurology 27:1042–1048Google Scholar
  5. Goochee C, Rasband W, Sokoloff L (1980) Computerized densitometry and color coding of [14C]deoxyglucose autoradiographs. Ann Neurol 7:359–370Google Scholar
  6. Hossmann K-A, Lechtape-Gruther H, Hossmann V (1973) The role of cerebral blood flow for the recovery of brain after prolonged ischemia. Z Neurol 204:281–290Google Scholar
  7. Hossmann K-A (1979) Cerebral dysfunction related to local and global ischemia of the brain. In: Hoffmeister F, Muller C (eds) Brain function in old age. Springer, Berlin Heidelberg New York, pp 385–393Google Scholar
  8. Ito U, Spatz M, Walker JT, Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils. I. Light microscopic observations. Acta Neuropathol (Berl) 32:209–223Google Scholar
  9. Johansson B, Li CL, Olsson Y, Klatzo I (1970) The effect of acute arterial hypertension on the blood-brain barrier to protein tracers. Acta Neuropathol (Berl) 16:117–124Google Scholar
  10. Johansson B, Nilsson B (1977) The pathophysiology of blood-brain barrier dysfunction induced by severe hypercapnia and by epileptic brain activity. Acta Neuropathol (Berl) 38:153–158Google Scholar
  11. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69Google Scholar
  12. Klatzo I (1975) Pathophysiologic aspects of cerebral ischemia. In: Tower DB (ed) The nervous system, vol 1. Raven Press, New York, pp 313–322Google Scholar
  13. Levy D, Van Uitert R, Pike C (1979) Delayed post-ischemic hypoperfusion: a potentially damaging consequence of stroke. Neurology 29:1245–1252Google Scholar
  14. Little J, Kerr F, Sundt T (1976) Microcirculatory obstruction in focal cerebral ischemia: an electron microscope investigation in monkeys. Stroke 7:25–30Google Scholar
  15. Miller C, Lampard D, Alexander K, Brown W (1980) Local cerebral blood flow following transient cerebral ischemia. Stroke 11:534–541Google Scholar
  16. Moskowitz MA, Wurtman RJ (1976) Acute stroke and brain monoamines. In: Scheinberg P (ed) Cerebrovascular diseases. Raven Press, New York, pp 153–166Google Scholar
  17. Mrsulja BB, Mrsulja BJ, Spatz M, Ito U, Walker JT, Klatzo I (1976a) Experimental cerebral ischemia in Mongolian gerbils. IV. Behaviour of biogenic amines. Acta Neuropathol (Berl) 26:1–8Google Scholar
  18. Mrsulja BB, Mrsulja BJ, Spatz M, Klatzo I (1976b) Catecholamines in brain ischemia-effects of α-methyl-p-tyrosine and pargyline. Brain Res 98:388–393Google Scholar
  19. Ohno K, Pettigrew KD, Rapoport SI (1976) Local cerebral blood flow in the conscious rat as measured with14C-antipyrine,14C-iodoantipyrine and3H nicotine. Stroke 10:62–67Google Scholar
  20. Pappius HM, Sawaki HE, Fieschi C, Rapoport SI, Sokoloff L (1979) Osmotic opening of the blood-brain barrier and local glucose utilization. Ann Neurol 5:211–219Google Scholar
  21. Pulsinelli WA, Levy DE, Duffy TE (1982) Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann Neurol 11:499–509Google Scholar
  22. Snyder J, Nemoto E, Carroll R, Safar P (1975) Global ischemia in dogs: intracranial pressure blood flow and metabolism. Stroke 6:21–27Google Scholar
  23. Suzuki R, Yamaguchi T, Li CL, Klatzo I (1983) The effects of 5-minute ischemia in Mongolian gerbils: II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus. Acta Neuropathol (Berl) 60:217–222Google Scholar
  24. Takagi S, Cocito L, Hossmann K-A (1977) Blood recirculation and pharmacological responsiveness of the cerebral vasculature following prolonged ischemia of the cat brain. Stroke 8:707–712Google Scholar
  25. Van Uitert RL, Levy DE (1978) Regional brain blood flow in the conscious gerbils. Stroke 9:67–72Google Scholar
  26. Vogt C, Vogt O (1922) Erkrankungen der Großhirnrinde im Lichte der Topistik, Pathoklise und Pathoarchitektonik. J Psychiat Neurol 28:9–68Google Scholar
  27. Welsh FA, Greenberg JH, Jones SC, Ginsberg MD, Reivich M (1980) Correlation between glucose utilization and metabolite levels during focal ischemia in cat brain. Stroke 11:79–84Google Scholar
  28. Westergaard E, Go KG, Klatzo I, Spatz M (1976) Increased permeability of cerebral blood vessels to horseradish peroxidase induced by ischemia in Mongolian gerbils. Acta Neuropathol (Berl) 35:307–325Google Scholar
  29. Woman M, Klatzo I, Chui E, Wilmes F, Nishimoto K, Fujiwara K, Spatz M (1981) Evaluation of the dye-protein tracers in pathophysiology of the blood-brain barrier. Acta Neuropathol (Berl) 54:55–61Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • R. Suzuki
    • 1
  • T. Yamaguchi
    • 1
  • T. Kirino
    • 1
  • F. Orzi
    • 2
  • I. Klatzo
    • 1
  1. 1.Laboratory of Neuropathology and Neuroanatomical SciencesNINCDS, National Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Cerebral Metabolism, NIMHNational Institutes of HealthBethesdaUSA

Personalised recommendations