Environmental and Resource Economics

, Volume 6, Issue 2, pp 119–138 | Cite as

Mining the soil: Agricultural production system on peatland

  • Renan U. Goetz
  • David Zilberman


Soil is usually considered as a renewable resource for dynamic crop and production management decision problems. For peatland, however, soil should be regarded as an exhaustible resource. This paper determines the optimal utilization of peatland for agricultural production within a dynamic context and it also presents an empirical study where the quasirent function is convex in the input and not concave as assumed in many economic studies. As a result of this convexity a corner solution is obtained. Moreover, the study demonstrates that there is only a slight difference between short- and farsighted behavior, and that both lead ultimately to an accelerated exhaustion of the resource. Private optimization leads to intensive use of the peat in the production of high value crops, which depletes the peat in a relatively short period of time. However, peatland also possesses a value as an environmental asset. The study provides a benchmark for the decision as to whether to convert peatland into productive agricultural land or to conserve it.

Key words

Exhaustible resource peatland optimal control groundwater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Briemle, G. (1990), ‘Natürliche Bewaldungstendenz und Mindestpflege von Moorbiotopen’, in K. Göttlich, ed.,Moor- und Torfkunde, 3. edn, Stuttgart: E. Schweizerbart'sche.Google Scholar
  2. Brooke, A., D. Kendrick and A. Meeraus (1992),GAMS: A User's Guide, release 2.25, The Scientific Press, San Francisco.Google Scholar
  3. Burt, O. (1981), ‘Farm Level Impacts of Soil Conservation in the Palouse Area of the Northwest’,American Journal of Agricultural Economics 63(1), 83–92.Google Scholar
  4. Caputo, M. (1990), ‘How To Do Comparative Dynamics on the Back of an Envelope in Optimal Control Theory’,Journal of Economics Dynamics and Control 14, 655–683.Google Scholar
  5. Chiang, A. (1992),Elements of Dynamic Optimization, 3rd edn, McGraw Hill, New York.Google Scholar
  6. Eggelsmann, R. (1976), ‘Peat Consumption under Influence of Climate, Soil Condition and Utilization’, inProceedings of the 5 th International Peat Congress, International Peat Society, 21–25. September, Poznán, Poland, pp. 233–247.Google Scholar
  7. Eggelsmann, R. (1981),Dränanleitung für Landbau, Ingenieurbau und Landschaftsbau, 2. edn, Paul Parey, Hamburg, Berlin.Google Scholar
  8. Eggelsmann, R. (1990), ‘Wasserregelung im Moor’, in K. Göttlich, ed.,Moor- und Torfkunde, 3. edn, Stuttgart: E. Schweizerbart'sche.Google Scholar
  9. Feichtinger, G. and R. Hartl (1986),Optimale Kontrolle ökonomischer Prozesse, Walter de Gruyter, Berlin.Google Scholar
  10. Harris, C., H. Erickson, N. Ellis and J. Larson (1962), ‘Water Level Control in Organic Soil as Related to Subsidence Rate’,Soil Science 94(1), 158–161.Google Scholar
  11. Hotelling, H. (1931), ‘The Economics of Exhaustible Resources’,Journal of Political Economy 39(2), 137–175.Google Scholar
  12. Ilnicki (1972), ‘Subsidence of Lowmoor in Long-Term Agricultural Utilization’ inProceedings of the 4 th International Peat Congress, International Peat Society, 25–30. June, Otaniemi, Finland, pp. 383–394.Google Scholar
  13. Kantonales Meliorationsamt Bern (1992), Drainagekosten 1991/92, Arbeitsbericht, unveröffentlicht.Google Scholar
  14. Kuntze, H., G. Roeschmann and G. Schwerdtfeger (1988),Bodenkunde, 4. edn, Eugen Ulmer, Stuttgart.Google Scholar
  15. Landwirtschaftliche Beratungszentrale Lindau (1991),Preis- und Deckungsbeitragskatalog, LBL, Lindau.Google Scholar
  16. Maslov, B. and E. Panov (1980), ‘Peat Soils: Improvement and Agricultural Use in the USSR’, inProceedings of the 6 th International Peat Congress, International Peat Society, 17–23 August, Duluth, U.S.A., pp. 421–425.Google Scholar
  17. McConnell, K. (1983), ‘An Economic Model of Soil Conservation’,American Journal of Agricultural Economics 65(1), 83–89.Google Scholar
  18. Miranowski, J. (1984), ‘Impacts of Productivity Loss on Crop Production and Management in a Dynamic Economic Model’,American Journal of Agricultural Economics 66(1), 61–71.Google Scholar
  19. Mundel, G. (1986), ‘Verlauf and Umfang der Sackung eines Niedermoores — Ermittelt in Grundwasserlysimeter’,Archiv für Acker- und Pflanzenbau und Bodenkunde 30(9), 531–537.Google Scholar
  20. Poirée, M. and C. Ollier (1978),Assainissement Agricole, Eyrolles, Paris.Google Scholar
  21. Schothorst, C. (1977), ‘Subsidence of Low Moor Peat Soils in the Western Netherlands’,Geoderma 17, 265–291.Google Scholar
  22. Segeberg, H. (1960), ‘Moorsackungen durch Grundwasserabsenkungen und deren Vorausberechnung mit Hilfe empirischer Formeln’,Zeitschrift für Kulturtechnik und Flurbereinigung 1, 144–161.Google Scholar
  23. Seierstad, A. and K. Sydsæter (1987),Optimal Control Theory with Economic Applications, North-Holland, Amsterdam.Google Scholar
  24. Shih, S., J. Mishoe, J. Jones and D. Myhre (1978), ‘Modeling the Subsidence of Everglades Organic Soil’,ASAE — Transaction 21(5), 1151–1156.Google Scholar
  25. Visser, W. (1958), ‘De Landbouwwateringhuishouding in Nederland’,Ned. TNO rapport 1, Comm. Onderz. Landb. Waterhuish.Google Scholar
  26. Wesseling, J. (1974), ‘Crop Growth and Wet Soils’, in J. Van Schilfgaarde, ed.,Drainage for Agriculture, Madison: American Society of Agronomy.Google Scholar
  27. Zilberman, D., M. Wetzstein and M. Marra (1993), ‘The Economics of Nonrenewable and Renewable Resources’, in G. Carlson, D. Zilberman and J. Miranowski, eds.,Agricultural and Environmental Resource Economics, New York: Oxford University Press.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Renan U. Goetz
    • 1
  • David Zilberman
    • 1
  1. 1.Department of Agricultural Economics, ETH-ZentrumFederal Institute of TechnologyZürichSwitzerland

Personalised recommendations