Advertisement

Journal of comparative physiology

, Volume 108, Issue 3, pp 243–254 | Cite as

Untersuchungen zum anaeroben Glykogenabbau beiTubifex tubifex M.

  • U. Schöttler
  • G. Schroff
Article

Anaerobic degradation of glycogen inTubifex tubifex M.

Summary

  1. 1.

    The activities of glycolytic enzymes and of related enzymes of anaerobic carbohydrate metabolism were determined inTubifex. The complete line of glycolytic enzymes was detected (Table 1). Only very little lactate dehydrogenase activity could be detected, while high activities of enzymes essential for the production of alanine and succinate are present.

     
  2. 2.

    Under anaerobic conditions, lactate, alanine, succinate and volatile fatty acids are formed from14C-labeled glucose (Tables 2 and 3).

     
  3. 3.

    Glycogen degradation was measured under anaerobic conditions (Fig. 1).

     
  4. 4.

    During anaerobiosis a significant increase of alanine, succinate, propionate and acetate was found. However, the concentration of lactate increased only slightly. After an initial increase within the first 24 h of anaerobiosis, the concentration of alanine remained constant. Succinate, on the other hand, accumulated continuously during 48 h of anaerobiosis, reaching concentrations of 150 μmol/g dry weight (Table 4, Fig. 2).

     
  5. 5.

    The major end products of fermentation were identified as propionate and acetate. Both are excreted in substantial amounts (Table 5).

     
  6. 6.

    The amount of anaerobic end products equals the amount of glycogen metabolized (Table 6).

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alsterberg, G.: Die respiratorischen Mechanismen der Tubificiden. Lunds Univ. Arsskr., Avd. 2 (N.S.)18, 1–27 (1922)Google Scholar
  2. Bergmeyer, H.U.: Methoden der enzymatischen Analyse 2. Aufl. Weinheim: Verlag Chemie 1970Google Scholar
  3. Bücher, Th., Luh, W., Pette, D.: Einfache und zusammengesetzte optische Tests mit Pyridinnucleotiden. In: Hoppe-Seyler/Thierfelder, Handbuch der physiologisch-und pathologisch-chemischen Analyse, 10. Aufl., Bd. VI/A (Hrsg. K. Lang, E. Lehnartz), S. 292–339. Berlin-Göttingen-Heidelberg-New York: Springer 1964Google Scholar
  4. Chen, C., Awapara, J.: Intracellular distribution of enzymes catalyzing succinate production from glucose in Rangia mantle. Comp. Biochem. Physiol.30, 727–737 (1969a)Google Scholar
  5. Chen, C., Awapara, J.: Effect of oxygen on the end-products of glycolysis in Rangia cuneata. Comp. Biochem. Physiol.31, 395–401 (1969b)Google Scholar
  6. Coles, G.G.: Some biochemical adaptations of the swamp wormAlma emini to low oxygen levels in tropical swamps. Comp. Biochem. Physiol.34, 481–489 (1970)Google Scholar
  7. Dausend, K.: Über die Atmung der Tubificiden. Z. vergl. Physiol.14, 557–608 (1931)Google Scholar
  8. Gäde, G.: Vergleichende Untersuchungen zum Anaerobiosestoffwechsel von Muscheln. Dissertation, Münster 1974Google Scholar
  9. Gäde, G., Zebe, E.: Über den Anaerobiosestoffwechsel von Molluskenmuskeln. J. comp Physiol.85, 291–301 (1973)Google Scholar
  10. Gäde, G., Wilps, H., Kluytmans, J.H.F.M., Zwaan, A. de: Glycogen degradation and end products of anaerobic metabolism in the fresh water musselAnodonta cygnea. J. comp. Physiol.104, 79–85 (1975)Google Scholar
  11. Gilles, R.: Intermediary metabolism and energy production in some invertebrates. Arch. int. Physiol. Biochem.78, 313–326 (1970)Google Scholar
  12. Hochachka, P.W., Fields, J., Mustafa, T.: Animal life without oxygen: basic biochemical mechanism. Amer. Zool.13, 543–555 (1973)Google Scholar
  13. Kleinzeller, A. u. Mitarb.: Manometrische Methoden, Jena: WEB Gustav Fischer Verlag 1965Google Scholar
  14. Kluytmans, J.H.F.M., Veenhof, P.R., Zwaan, A. de: Anaerobic production of volatile fatty acids in the sea musselMytilus edulis. J. comp. Physiol.104, 71–78 (1975)Google Scholar
  15. Kmetec, E.: Spectrophotometric Method for the Enzymic Microdetermination of Succinic Acid. Anal. Biochem.16, 474–480 (1966)Google Scholar
  16. Koenen, M.-L.: Vergleichende Untersuchungen zur Atmungsphysiologie vonTubifex tubifex M. undLimnodrilus claparedeanus R. Z. vergl. Physiol.33, 436–456 (1951)Google Scholar
  17. Mehlmann, B., v. Brand, Th.: Further studies on the anaerobic metabolism of some fresh water snails. Biol. Bull.100, 199–205 (1950)Google Scholar
  18. Mustafa, T., Hochachka, P.W.: Enzymes in facultative anaerobiosis of molluscs. III. Phosphoenolpyruvate carboxykinase and its role in aerobic-anaerobic transition. Comp. Biochem. Physiol.45B, 657–667 (1973)Google Scholar
  19. Saz, H.: Facultative anaerobiosis in the invertebrates: Pathway and control systems. Amer. Zool.11, 125–135 (1971)Google Scholar
  20. Simpson, J.W., Awapara, J.: The pathway of glucose degradation in some invertebrates. Comp. Biochem. Physiol.18, 537–548 (1966)Google Scholar
  21. Stahl, E.: Dünnschichtchromatographie, 2. Aufl., Berlin-Heidelberg-New York: Springer 1967Google Scholar
  22. Stokes, T.M., Awapara, J.: Alanine and succinate as end-products of glucose degradation in the clamRangia cuneata. Comp. Biochem. Physiol.25, 883–892 (1968)Google Scholar
  23. Zebe, E.:In vivo-Untersuchungen über den Glucose-Abbau beiArenicola marina (Annelida, Polychaeta). J. comp. Physiol.101, 133–145 (1975)Google Scholar
  24. Zoeten, L.W. de, Tipker, J.: Intermediary metabolism of the liver flukeFasciola hepatica II. Hoppe-Seylers Z. physiol. Chem.350, 691–695 (1969)Google Scholar
  25. Zwaan, A. de: The anaerobic carbohydrate metabolism in the sea musselMytilus edulis L. Thesis, Utrecht University (1971)Google Scholar
  26. Zwaan, A. de, Marrewijk, W.J.A. van: Anaerobic glucose degradation in the sea musselMytilus edulis L. Comp. Biochem. Physiol.44B, 429–439 (1973)Google Scholar
  27. Zwaan, A. de, Marrewijk, W.J.A. van, Holwerda, D.A.: Anaerobic carbohydrate metabolism in the sea musselMytilus edulis L. Netherland J. Zool.23, 225–228 (1973)Google Scholar
  28. Zwaan, A. de, Zandee, D.D.: The utilization of glycogen and accumulation of some intermediates during anaerobiosis inMytilus edulis L. Comp. Biochem. Physiol.43B, 47–54 (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • U. Schöttler
    • 1
  • G. Schroff
    • 1
  1. 1.Lehrstuhl für TierphysiologieZoologisches Institut der Universität MünsterMünsterBundesrepublik Deutschland

Personalised recommendations