Advertisement

Acta Neuropathologica

, Volume 44, Issue 1, pp 1–8 | Cite as

Abnormal ultrastructural appearances in axons of feline pericruciate cortex after lateral funiculotomy

  • K. D. Barron
  • M. P. Dentinger
Original Investigations

Summary

Following left lateral funiculotomy, axons of cat pericruciate cortex exhibited neurofilamentous hyperplasia and complex, adaxonal, oligodendrocytic invaginations into electron-lucent or (commonly) electron-dense, degenerating axoplasm. These changes were absent from sham-operated and unoperated animals. Neurofilamentous hyperplasia was exclusively right-sided and appeared in myelinated axons 5–49 days postoperatively and in nonmyelinated axons 14–153 days after surgery. Oligoglial invaginations were present 1–49 days after surgery and were predominantly right-sided.

Intramyelinic, axo-dendritic synapses appeared in operated cats 5–10 days postoperatively. Intra-axonal accumulations of ribosomes were found also. These changes also occurred exclusively or predominantly contralateral to spinal surgery.

Other ultrastructural abnormalities, e.g., amorphous transformation of axoplasm and accumulations of dense bodies in intra-myelinic, dark cytoplasm, had a less certain relationship to lateral funiculotomy.

The axonal alterations that were limited to operated cats possibly represent a true retrograde axonal degeneration occurring at a distance from the site of axonic interruption and unaccompanied by evidence of nerve cell death.

Key words

Axons Retrograde axonal degeneration Motor cortex Lateral funiculotomy Neurofilamentous hyperplasia Oligodendroglia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldskogius, H.: Indirect and direct Wallerian degeneration in the intramedullary root fibres of the hypoglossal nerve. An electron microscopical study in the kitten. Ergebn. Anat. Entwickl.-Gesch.50, 1–78 (1974)Google Scholar
  2. Balentine, J. D.: Complex oligodendroglial invaginations within myelinated nerve fibers of the central nervous system during axonal degeneration. J. Neuropathol. Exp. Neurol.36, 897–906 (1977)Google Scholar
  3. Barron, K. D., Chiang, T. Y., Daniels, A. C., Doolin, P. F.: Subcellular accompaniments of axon reaction in cervical motoneurons of the cat. In: Progress in neuropathology (H. M. Zimmerman, Ed.), Vol. I., pp. 255–280. New York: Grune and Stratton 1971Google Scholar
  4. Barron, K. D.: Ultrastructural changes in dendrites of central neurons during axon reaction. In: Advances in neurology (G. W. Kreutzberg, Ed.), Vol. 12, pp. 381–399. New York: Raven Press 1975Google Scholar
  5. Barron, K. D., Dentinger, M. P., Nelson, L. R., Mincy, J. E.: Ultrastructure of axonal reaction in red nucleus of cat. J. Neuropathol. Exp. Neurol.34, 222–248 (1975)Google Scholar
  6. Barron, K. D., Doolin, P. F.: Ultrastructural observations on retrograde atrophy of lateral geniculate body. II. The environs of the neuronal soma. J. Neuropathol. Exp. Neurol.27, 401–420 (1968)Google Scholar
  7. Berrevoets, C. E., Kuypers, H. G. J. M.: Pericruciate cortical neurons projecting to brain stem reticular formation, dorsal column nuclei and spinal cord in the cat. Neurosci. Letters1, 257–262 (1975)Google Scholar
  8. Blakemore, W. F.: Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J. Neurocytol.1, 413–426 (1972)Google Scholar
  9. Blakemore, W. F., Palmer, A. C., Noel, P. R. B.: Ultrastructural changes in isoniazid-induced brain oedema in the dog. J. Neurocytol.1, 263–278 (1972)Google Scholar
  10. Bondy, S. C., Purdy, J. L., Babitch, J. A.: Axoplasmic transport of RNA containing a polyadenylic acid segment. Neurochem Res.2, 407–415 (1977)Google Scholar
  11. Brodal, A., Walberg, F.: Ascending fibers in pyramidal tract of cat. Arch. Neurol. Psychiatr.68, 755–775 (1952)Google Scholar
  12. Cole, M., Nauta, W. J. H.: Retrograde atrophy of axons of the medial lemniscus of the cat. An experimental study. J. Neuropathol. Exp. Neurol.29, 354–369 (1970)Google Scholar
  13. Colonnier, M., Guillery, R. W.: Synaptic organization in the lateral geniculate nucleus of the monkey. Z. Zellforsch.62, 333–355 (1964)Google Scholar
  14. Dimova, R. N., Markov, D. V.: Changes in the mitochondria in the initial part of the axon during regeneration. Acta Neuropathol. (Berl.)36, 235–242 (1976)Google Scholar
  15. Frankel, R. D., Koenig, E.: Identification of major indigenous protein components in mammalian axons and locally synthesized axonal protein in hypogossal nerve. Exp. Neurol.57, 282–295 (1977)Google Scholar
  16. Gehuchten, A. van: La dégénérescence dite rétrograde ou dégénérescence Wallerienne indirecte. Névraxe5, 3–107 (1903)Google Scholar
  17. Grant, G., Westman, J.: The lateral cervical nucleus in the cat. IV. A light and electron microscopic study after midbrain lesions with demonstration of indirect Wallerian degeneration at the ultrastructural level. Exp. Brain Res.7, 51–67 (1969)Google Scholar
  18. Jellinger, K.: Neuroaxonal dystrophy: its natural history and related disorders. In: Progress in neuropathology (H. M. Zimmerman, Ed.), Vol. 2, pp. 129–180. New York: Grune and Stratton 1973Google Scholar
  19. Kalil, K., Schneider, G. E.: Retrograde cortical and axonal changes following lesions of the pyramidal tract. Brain Res.89, 15–27 (1975)Google Scholar
  20. Knyihar, E., Csillik, B.: Effect of peripheral axotomy on the fine structure and histochemistry of the Rolando substance: degenerative atrophy of central processes of pseudounipolar cells. Exp. Brain Res.26, 73–87 (1976)Google Scholar
  21. Lampert, P. W.: A comparative electron microscopic study of reactive, degenerating and dystrophic axons. J. Neuropathol. Exp. Neurol.26, 345–368 (1967)Google Scholar
  22. Lassek, A. M.: The pyramidal tract. A study of retrograde degeneration in the monkey. Arch. Neurol.48, 561–567 (1942)Google Scholar
  23. McMahan, U. J.: Fine structure of synapses in the dorsal nucleus of the lateral geniculate body of normal and blinded rats. Z. Zellforsch.76, 116–146 (1967)Google Scholar
  24. Raymon Y Cajal, S.: Degeneration and regeneration of the nervous system. Vol. 2. p. 656. London: Oxford University Press 1928Google Scholar
  25. Rustioni, A., Sotelo, C.: Synaptic organization of the nucleus gracilis of the cat. Experimental identification of dorsal root fibers and cortical afferents. J. Comp. Neurol.155, 441–468 (1974)Google Scholar
  26. Rutledge, L. T., Duncan, J., Beatty, N.: A study of pyramidal cell axon collaterals in intact and partially isolated adult cerebral cortex. Brain Res.16, 15–22 (1969)Google Scholar
  27. Sotelo, C., Palay, S. L.: Altered axons and axon terminals in the lateral vestibular nucleus of the rat. Lab. Invest.25, 653–671 (1971)Google Scholar
  28. Spencer, P. S., Thomas, P. K.: Ultrastructural studies of the dying-back process. II. The sequestration and removal of Schwann cells and oligodendrocytes or organelles from normal and diseased axons. J. Neurocytol.3, 763–783 (1974)Google Scholar
  29. Zelena, J.: Ribosome-like particles in myelinated axons of the rat. Brain Res.24, 359–363 (1970)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • K. D. Barron
    • 1
    • 2
  • M. P. Dentinger
    • 1
    • 2
  1. 1.Research Service (Neuropathology)Veterans Administration HospitalAlbanyUSA
  2. 2.Department of NeurologyAlbany Medical CollegeAlbanyUSA

Personalised recommendations