Acta Neuropathologica

, Volume 44, Issue 2, pp 91–102 | Cite as

Ultrastructural sequence of myelin degradation

I. Wallerian degeneration in the rat optic nerve
  • H. Lassmann
  • H. P. Ammerer
  • W. Kulnig
Original Works


The ultrastructural events in myelin degradation in the rat optic nerve following transection have been studied. Myelin debris was found in cells similar to multipotential glia cells (Vaughn and Peters, 1968) as well as in astrocytes and in few oligodendrocytes. The different types of inclusions found during myelin degradation were described in their quantitative relations. Similarities to inclusions described in adrenoleukodystrophy and multiple sclerosis are discussed. By comparison of the ultrastructural findings with histochemical and biochemical data available a hypothetical model of myelin degradation is presented. The process starts with the degradation of digestible proteins resulting in uniformly layered lipid inclusions. Lipid degradation leads to the formation of unstructured lipid droplets and crystals. During the late stages of Wallerian degeneration numerous polymorph inclusion types can be found, probably representing poorly digestible lipids or lipoproteins.

Key words

Myclin degradation Wallerian degeneration Optic nerve Electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, C. W. M.: Histochemical mechanisms of the Marchi reaction for degenerating myelin. J. Neurochem.2, 178–186 (1958)Google Scholar
  2. Adams, C. W. M., Leibowitz, S.: The general pathology of demyelinating diseases. In: The structure and function of the nervous tissue III. pp. 309–382 Ed.: G. H. Bourne. New York: Academic Press 1969Google Scholar
  3. Adams, C. W. M., Tuqan, N. A.: Histochemistry of myelin II. Proteins, lipid-protein dissotiation and proteinase activity in Wallerian degeneration. J. Neurochem.6, 334–341 (1961)Google Scholar
  4. Barton, A. A.: An electron microscope study of degeneration and regeneration of nerve. Brain85, 799–808 (1962)Google Scholar
  5. Bignami, A., Rallston, H. J.: The cellular reaction to Wallerian degeneration in the central nervous system of the cat. Brain Res.13, 444–461 (1969)Google Scholar
  6. Bischoff, A., Ullrich, J.: Amaurotische Idiotie in Verbindung mit metachromatischer Leukodystrophie. Acta Neuropathol. (Berl.)8, 292–308 (1967)Google Scholar
  7. Bornstein, H. B., Raine, C. S.: The initial structural lesion in serum induced demyelination in vitro. Lab. Invest.35, 391–401 (1976)Google Scholar
  8. Budka, H., Sluga, E., Heiss, W. D.: Spastic paraplegia associated with Addison's disease: Adult variant of Adreno-Leukodystrophy. J. Neurol.213, 237–250 (1976)Google Scholar
  9. Bunge, R. P., Bunge M. B., Ris, H.: Electron microscopic study of demyclination in an experimentally induced lesion in adult cat spinal cord. J. Biophys. Biochem. Cytol.7, 685–696 (1960)Google Scholar
  10. Bunge, M. B., Bunge, R. P., Ris, H.: Ultrastructural study of remyclination in experimental lesions in adult spinal cord. J. Biophys. Biochem. Cytol.10, 67–94 (1961)Google Scholar
  11. Dal Canto, M. C., Wisniewski, H. M., Johnson, A. B., Brostoff, S. W., Raine, C. S.: Vesicular disruption of myelin in autoimmune demyelination. J. Neurol. Sci.24, 313–319 (1975)Google Scholar
  12. Dunkerly, G. B., Duncan, D.: Light and electron microscopic study of the normal and degenerating cortico spinal tract in the rat. J. Comp. Neurol.137, 155–185 (1969)Google Scholar
  13. Friede, R. L.: Developmental neuropathology metabolic diseases, pp. 368–504. Wien-New York: Springer 1975Google Scholar
  14. Goldfisher, S.: The cytochemical demonstration of lysosomal aryl sulfatase activity by light and electron microscopy J. Histochem. Cytochem.13, 520–523 (1965)Google Scholar
  15. Gonatas, N. K., Levine, S., Shoulson, R.: Electron microscopic investigation of the phagocytosis of myelin in an experimental leukoencephalopathy. Ann. N.Y. Acad. Sci.122, 6–14 (1965)Google Scholar
  16. Gregoire, A., Perier, O., Dustin, P. Jr.: Metachromatic leukodystrophy, and electron microscopic study. J. Neuropathol. Exp. Neurol.25, 617–636 (1966)Google Scholar
  17. Hallpike, J. F., Adams, C. W. M.: Proteolysis and myelin breakdown: a review of recent histochemical and biochemical studies. Histochem. J.1, 559–578 (1969)Google Scholar
  18. Hallpike, J. F., Adams C. W., Bayliss, O. B.: Histochemistry of myelin IX. Neutral and acid proteinases in early Wallerian degeneration. Histochem. J.2, 209–218 (1970)Google Scholar
  19. Hauw, J. J., Escourolle, R.: Filamentous and multilamellated cytoplasmic inclusions in progressive multifocal leukencephalopathy. Acta Neuropathol. (Berl.)37, 263–265 (1977)Google Scholar
  20. Hirano, A.: Electron microscopy in Neuropathology. In: Progress in neuropathology, pp. 1–61. Ed. H. M. Zimmerman. New York-London: Grune and Stratton 1971Google Scholar
  21. Johnson, A. C., Mc Nabb, A. R., Rossiter, R. J.: Chemistry of Wallerian degeneration; review of recent studies. Arch. Neurol.64, 105–121 (1950)Google Scholar
  22. Johnson, J. E.: A fine structural study of degenerative — regenerative pathology in the surgically deafferented lateral vestibular nucleus of the cat. Acta Neuropathol. (Berl.)33, 227–243 (1975)Google Scholar
  23. Kruger, L., Maxwell, D. S.: Wallerian degeneration in the optic nerve of a reptile — an electron microscopic study. Am. J. Anat.125 247–270 (1969)Google Scholar
  24. Lampert, P., Cressman, M.: Fine structural changes of myelin sheaths after axonal degeneration. Am. J. Pathol.49, 1139–1153 (1966)Google Scholar
  25. Lee, J. C.: The fine structural alterations of nerve during Wallerian degeneration. J. Comp. Neurol.120, 65–80 (1963)Google Scholar
  26. Luse, S. A., Mc Caman, R. E.: Electron microscopy and biochemistry of Wallerian degeneration in the optic and tibial nerve. Am. J. Pathol.33, 586 (1957)Google Scholar
  27. McCaman, R. E., Robins, E.: Quantitative biochemical studies of Wallerian degeneration in the peripheral and central nervous system. J. Neurochem.5, 18–31 (1959)Google Scholar
  28. Maxwell, D. S., Kruger, L.: Small blood vessels and the origin of phagocytes in the rat cerebral cortex following heavy particle irradiation. Exp. Neurol.12, 33–54 (1965)Google Scholar
  29. Morris, J. H., Hudson, A. R., Weddell, G.: A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy. Z. Zellforsch.124, 76–102 (1972)Google Scholar
  30. Nathaniel, E. J. H., Pease, D. C.: Degenerative changes in rat dorsal roots during Wallerian degeneration. J. Ultrastruct. Res.9, 511–532 (1963)Google Scholar
  31. Noback, C. R., Reilly, J. A.: Myelin sheath during degeneration and regeneration II. Histochemistry. J. Comp. Neurol.105, 333–353 (1956)Google Scholar
  32. O'Daly, J. A., Imaeda, T.: Electron microscopic study of Wallerian degeneration in cutaneous nerves caused by mechanical injury. Lab. Invest.17, 744–766 (1967)Google Scholar
  33. Ohmi, S.: Electron microscopic study on Wallerian degeneration of the peripheral nerve. Z. Zellforsch.54, 39–67 (1961)Google Scholar
  34. Parker, F., Odland, G. F.: Experimental Xanthoma. A correlative biochemical, histological, histochemical and electron microscopic study. Am. J. Pathol.53, 537–566 (1968)Google Scholar
  35. Peterson, R. G.: Electron microscopy of trypsin-digested peripheral nerve myelin. J. Neurocytol.4, 115–120 (1957)Google Scholar
  36. Porcellati, G., Curti, B.: Proteinase activity of peripheral nerves during Wallerian degeneration. J. Neurochem.5, 277–282 (1960)Google Scholar
  37. Powell, H., Tindall, R., Schultz P., Paa, D., O'Brien, J., Lampert, P.: Adrenoleukodystrophy. Electron microscopic findings. Arch. Neurol.32, 250–260 (1975)Google Scholar
  38. Pineas, J.: Pathology of the early lesions in multiple sclerosis. Hum. Pathol.6, 531–554 (1975)Google Scholar
  39. Schaumburg, H. H., Powers, J. M., Suzuki, K., Raine, C. S.: Adrenoleukodystrophy (sex-linked Schilder disease): Ultrastructural demonstration of specific cytoplasmic inclusions in the central nervous system. Arch. Neurol.31, 210–213 (1974)Google Scholar
  40. Schlaepfer, W. W., Hager, H.: Ultrastructural studies of INH-induced neuropathy in rats. II. Alterations and decompostion of the myelin sheath. Am. J. Pathol.45, 423–430 (1964)Google Scholar
  41. Schlote, W.: Nervus opticus und experimentelles Trauma. Monogr. Gesamtgeb. Neurol. Psychiat.131, (1970)Google Scholar
  42. Seitelberger, F.: Histochemistry of demyelinating diseases proper including allergic encephalomyelitis and Pelizaeus-Merbacher's disease. In: Modern scientific aspects of neurology, pp. 148–187. Ed. J. N. Cumings, London: Arnold 1960Google Scholar
  43. Sluga, E.: Demyelinisierendes Neuropathie-Syndrom mit Strukturänderungen der Markballen. In: Polyneuropathien, Typen und Differenzierung, S. 51. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  44. Spurr, A. R.: A low viscosity epoxy-resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43 (1969)Google Scholar
  45. Suzuki, K.: Ultrastructural study of experimental globoid cells. Lab. Invest.23, 612–619 (1970)Google Scholar
  46. Tani, E.: Electron microscopic study on Wallerian degeneration of optic nerve. J. Neuropathol. Exp. Neurol.23, 162 (1964)Google Scholar
  47. Terry, R. D., Harkin, J. C.: Wallerian degeneration and regeneration of peripheral nerves. In: Biology of myelin, pp. 303–320, Ed. S. R. Korey. New York: Harper and Row 1959)Google Scholar
  48. Thomas, P. K., Sheldon, H.: Tubular arrays derived from myelin breakdown during Wallerian degeneration of peripheral nerves. J. Cell Biol.22, 715–718 (1964)Google Scholar
  49. Vaughn, J. E., Peters, A.: A third neuroglial cell type. An electron microscopic study. J. Comp. Neurol.133, 269–288 (1968)Google Scholar
  50. Vaughn, J. E., Pease, D. C.: Electron microscopic study of Wallerian degeneration in rat optic nerves. II. Astrocytes, Oligodendrocytes and adventitial cells. J. Comp. Neurol.140, 207–225 (1970)Google Scholar
  51. Vaughn, J. E., Hinds, P. L., Skoff, R. P.: Electron microscopic studies of Wallerian degeneration in rat optic nerves. I. The multipotential glia. J. Comp. Neurol.140, 175–206 (1970)Google Scholar
  52. Vaughn, J. E., Skoff, R. P.: Neuroglia in experimentally altered central nervous system. In: The structure and function of nervous tissue pp. 39–72. Ed.: G. H. Bourne. New York, London: Academic Press 1972Google Scholar
  53. Wechsler, W., Hager, H.: Elektronenmikroskopische Untersuchungen der Waller'schen Degeneration des peripheren Säugetiernerven. Beitr. Pathol.126, 352–380 (1962)Google Scholar
  54. Wisniewski, H. M., Raine, C. S.: An ultrastructural study of experimental demyelination and remyelination. V. Central and peripheral nervous system lesions caused by diphteria toxin. Lab. Invest.25, 37–80 (1971)Google Scholar
  55. Woman, M.: Histochemistry of demyelination and myelination. J. Histochem. Cytochem.16, 803–807 (1968)Google Scholar
  56. Yu, R. C. P., Bunge, R. P.: Damage and repair of the peripheral myelin sheath and node of Ranvier after treatment with Trypsin. J. Cell Biol.64, 1–14 (1975)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • H. Lassmann
    • 1
    • 2
  • H. P. Ammerer
    • 1
    • 2
  • W. Kulnig
    • 1
    • 2
  1. 1.Neurologisches Institut der Universität WienWienAustria
  2. 2.Neurochirurgische Abteilung der Rudolfstiftung und Institut für Mikromorphologie und Elektronenmikroskopie der Universität WienWienAustria

Personalised recommendations