Acta Neuropathologica

, Volume 54, Issue 1, pp 63–74 | Cite as

Abnormal fibrils from scrapie-infected brain

  • P. A. Merz
  • R. A. Somerville
  • H. M. Wisniewski
  • K. Iqbal
Original Works

Summary

Abnormal fibrillary structures, designated “scrapie-associated fibrils” (SAF), have been observed using negative stain techniques in subfractions of brains from scrapie-affected animals. SAF have been observed in all combinations of strain of scrapie agent and strain or species of host examined, regardless of their histopathology, in particular the presence or absence of amyloid plaques. SAF consist either of two or four filaments. They are morphologically dissimilar to the normal brain fibrils — microtubules, neurofilaments, glial filaments, and F actin. However, SAF do bear a resemblance to amyloid.

Key words

Scrapie Fibrils Amyloid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amos LA (1979) Structure of microtubules. In: Roberts K, Hyams JS (eds) Microtubules. Academic Press, London, pp 1–64Google Scholar
  2. Boeré H, Ruinen L, Scholten JH (1965) Electron-microscopic studies on the fibrillar component of human splenic amyloid. J Lab Clin Med 66:943–951Google Scholar
  3. Chandler RL (1963) Experimental scrapie in the mouse. Res Vet Sci 4:276–285Google Scholar
  4. Cohen RS, Blomberg F, Berzins K, Siekevitz P (1977) The structure of postsynaptic densities isolated from dog cerebral cortex. I. Overall morphology and protein composition. J Cell Biol 74:181–203Google Scholar
  5. Dickinson AG, Fraser H (1977) The pathogenesis of scrapie in inbred mice: an assessment of host control and response, involving many strains of agent. In: ter Meulen V, Katz M (eds) Slow virus infections of the central nervous system. Springer, New York, pp 3–13Google Scholar
  6. Dickinson AG, Fraser H, Bruce M (1979) Animal models for the dementias. In: Glen AIM, Whalley LJ (eds) Alzheimer's disease. Early recognition of potentially reversible deficits. Churchill Livingstone, Edinburgh London New York, pp 42–45Google Scholar
  7. Flament-Durand J, Couck AM (1979) Spongiform alteration in brain biopsies of presenile dementia. Acta Neuropathol (Berl) 46: 159–162Google Scholar
  8. Forer A (1978) Electron microscopy of actin. In: Hayat MA (ed) Principles and techniques of electron microscopy, vol 9. van Nostrand Reinhold, New York, pp 126–174Google Scholar
  9. Fraser H (1976) The pathology of natural and experimental scrapie. In: Kimberlin RH (ed) Slow virus diseases of animals and man. North Holland, Amsterdam New York, pp 209–241Google Scholar
  10. Fraser H (1980) Neuropathology of Scrapie: The precision of the lesions and their diversity. In: Prusiner SB, Hadlow WJ (eds) Slow transmissible diseases of the nervous system, vol 1. Academic Press, New York, pp 387–406Google Scholar
  11. Glenner GG (1980) Amyloid deposits and amyloidosis. N Engl J Med 302:1283–1292Google Scholar
  12. Glenner GG, Canes ED, Bladen HA, Linke RP, Termine JD (1974) \-pleated sheet fibrils. A comparison of native amyloid with synthetic protein fibrils. J Histochem Cytochem 22:1141–1158Google Scholar
  13. Glenner GG, Page D, Iserski C, Harada M, Cuatrecasas P, Canes ED, DeLellis RA, Bladen HA, Keiser HR (1971) Murine amyloid fibril protein: Isolation purification, and characterization. J Histochem Cytochem 19:16–28Google Scholar
  14. Iqbal K, Wisniewski H (1979) Neurofilament proteins: Effect of ionic strength and a calcium chelator. Trans Am Soc Neurochem 10:168Google Scholar
  15. Kim H, Binder LI, Rosenbaum JL (1979) The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol 80:266–276Google Scholar
  16. Kimberlin RH (1976) Biochemical and behavioral changes in scrapie. In: Kimberlin RH (ed) Slow virus diseases of animals and man. North Holland, Amsterdam New York, pp 307–323Google Scholar
  17. Kimberlin RH, Walker CA (1977) Characteristics of a short incubation model of scrapie in the golden hamster. J Gen Virol 34:295–304Google Scholar
  18. Krishnan N, Kaiserman-Abramof IR, Lasek RJ (1979) Helical substructure of neurofilaments isolated fromMyxicola and squid giant axons. J Cell Biol 82:323–335Google Scholar
  19. Oppenheimer DR (1975) Pathology of transmissible and degenerative diseases of the nervous system. In: Illis LS (ed) Viral diseases of the central nervous system. Williams and Wilkins, Baltimore, pp 161–174Google Scholar
  20. Outram GW (1976) The pathogenesis of scrapie in mice. In: Kimberlin RH (ed) Slow virus diseases of animals and man. North Holland, Amsterdam New York, pp 325–357Google Scholar
  21. Rueger DC, Huston JS, Dahl D, Bignami A (1979) Formation of 100 Å filaments from purified glial fibrillary acid protein in vitro. J Mol Biol 135:53–68Google Scholar
  22. Schlaepfer WW (1977) Immunological and ultrastructural studies of neurofilaments isolated from rat peripheral nerve. J Cell Biol 74:226–240Google Scholar
  23. Shelanski ML, Albert S, Devries GH, Norton WT (1971) Isolation of filaments from brain. Science 174:1242–1245Google Scholar
  24. Shelanski ML, Gaskin F, Cantor CR (1973) Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci USA 70:765–768Google Scholar
  25. Spudich JA, Watt S (1971) The regulation of rabbit skeletal muscle contraction. J Biol Chem 246:4866–4871Google Scholar
  26. Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43Google Scholar
  27. Whittaker VP (1969) The synaptosome. In: Lajtha A (ed) Handbook of neurochemistry, vol 2. Plenum, New York, pp 327–364Google Scholar
  28. Wisniewski HM (1979) Neurofibrillary and synaptic pathology in senile dementias of the Alzheimer's type. In: Glen AIM, Whalley LJ (eds) Alzheimer's disease. Early recognition of potentially reversible deficits. Churchill Livingstone, Edinburgh London New York, pp 7–16Google Scholar
  29. Wisniewski HM, Bruce ME, Fraser H (1975) Infectious etiology of neuritic (senile) plaques in mice. Science 190:1108–1110Google Scholar
  30. Wisniewski HM, Terry RD (1973) Morphology of the aging brain, human and animal. Prog Brain Res 40:167–186Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • P. A. Merz
    • 1
  • R. A. Somerville
    • 1
  • H. M. Wisniewski
    • 1
  • K. Iqbal
    • 1
  1. 1.New York State Institute for Basic Research in Mental RetardationStaten IslandUSA

Personalised recommendations