Acta Neuropathologica

, Volume 4, Issue 6, pp 590–603 | Cite as

Electron microscopy of focal neuroaxonal lesions produced by β-β′-iminodipropionitrile (IDPN) in rats

I. The advanced lesions
  • Shi-Ming Chou
  • Henrik A. Hartmann
Original Investigations

Summary and Conclusions

An electron microscopic study was made on neuroaxonal lesions in the anterior motoneurons of the lumbar spinal cord in IDPN-treated rats which manifested the permanent “waltzing syndrome” during the stages of axonal balloon formation. The following observations and discussion were made.
  1. 1.

    Within the axonal balloons, there were focal accumulations of usual axoplasmic constituents, viz., neurofibrils, mitochondria, and small vesicles.

  2. 2.

    The balloons, outlined by a thin myelin or axolemmal layer, or axoplasmic contents without definite membrane structure, were often surrounded by edematous spaces filled with granular material.

  3. 3.

    Distal to the balloons, there were segmental accumulations of degenerating mitochondria, vesicles, and also of dense complex bodies within the myelinated portions of axons.

  4. 4.

    No significant alterations were observed in the perikarya of the anterior motoneurons.

  5. 5.

    The present study seems to support a previously held hypothesis of a mechanism of “primary axostasis” as the cause of the lesions as well as of the waltzing syndrome. The intra-axonic dense complex bodies, resembling pigment granules, would provide a plausible explanation for the permanence of the induced syndrome.



Spinal Cord Granular Material Electron Microscopic Study Membrane Structure Small Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Elektronenmikroskopische Untersuchungen der neuroaxonalen Läsionen an den Vorderhornzellen des Lumbalmarks von IDPN-behandelten Ratten mit permanentem “waltzing syndrome” wurden während des Stadiums der axonalen Ballonierung durchgeführt. Es wurden folgende Beobachtungen gemacht und diskutiert:
  1. 1.

    Innerhalb der Axonballons finden sich fokale Anhäufungen üblicher Axoplasmabestandteile, z. B. Neurofibrillen, Mitochondrien und kleine Vesikeln.

  2. 2.

    Die Ballons, die von einer dünnen Myelin-oder Axolemmschicht oder von Axoplasmaanteilen ohne distinkte Membranstruktur begrenzt sind, werden oft von Ödemräumen umgeben, die von granulärem Material erfüllt sind.

  3. 3.

    Distal von den Ballons findet sich eine segmentale Anhäufung von degenerierten Mitochondrien, Vesikeln sowie von dichten zusammengesetzten Körperchen innerhalb der bemarkten Abschnitte des Axons.

  4. 4.

    In den Perikarya der Vorderhornzellen finden sich keine nennenswerten Veränderungen.

  5. 5.

    Die vorliegende Untersuchung scheint die frühere Hypothese des Mechanismus der “primären Axostase” als Ursache der Läsionen beim “waltzing syndrom” zu unterstützen. Die intraaxonalen dichten zuxammengesetzten Körper dürften eine plausible Erklärung für die Permanenz des induzierten Syndroms geben.



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bubis, J. J., andS. A. Luse: An electron microscopic study of experimental allergic encephalomyelitis in the rat. Amer. J. Path.44, 299–317 (1964).Google Scholar
  2. Chou, S. M., andH. A. Hartmann: Autoradiographic study of axonal flow of IDPN treated rats. Fed. Proc.22, 316 (1963).Google Scholar
  3. ——: Neuroaxonal lesions produced by β-β-iminodipropionitrile, with a concept of “axostasis”. Acta neuropath. (Berl.)3, 428–450 (1964).Google Scholar
  4. Cowen, D., andE. W. Olmstead: Infantile neuroaxonal dystrophy. J. Neuropath. exp. Neurol.12, 175–236 (1963).Google Scholar
  5. Dalton, A. J.: A chrome-osmium fixative for electron microscopy. Anat. Rec.121, 281 (1955).Google Scholar
  6. D'Agostino, A. N.: An electron microscopic study of the trigeminal ganglion of the rat poisoned by plasmocide. Neurology (Minneap.)14, 114–124 (1964).Google Scholar
  7. Diezel, P. B., andG. Ule: Histochemische Untersuchungen an den “ghost cells” beim experimentellen Neurolathyrismus. Acta neuropath. (Berl.)3, 150–163 (1963).Google Scholar
  8. Gonatas, N. K., R. D. Terry, R. Winkler, S. R. Korey, C. J. Gomez, andA. Stein: A case of juvenile lipidosis: The significance of electron microscopic and biochemical observations of a cerebral biopsy. J. Neuropath. exp. Neurol.22, 557–580 (1963).Google Scholar
  9. Hartmann, H. A., J. J. Lalich, andK. Akert: Lesions in the anterior motor horn cells of rats after administration of bis-β-cyanoethylamine. J. Neuropath. exp. Neurol.17, 298 (1958).Google Scholar
  10. —, andL. Murmanis: Electron microscopic alterations of spinal motor neurons produced by β-β-iminodipropionitrile. Fed. Proc.21, 362 (1962).Google Scholar
  11. Hruban, Z., B. Spargo, H. Swift, R. W. Wissler, andR. G. Kleinfeld: Focal cytoplasmic degradation. Amer. J. Path.42, 657–683 (1963).Google Scholar
  12. Koenig, H., R. A. Grost, andW. F. Windle: A physiological approach to perfusionfixation of tissue with formalin. Stain Technol.20, 13–22 (1945).Google Scholar
  13. Lampert, P., J. Blumberg, andA. Pentschew: Axonal dystrophy. An electron microscopic study of the gracil and cuneate nuclei of Vit. E deficient rats. J. Neuropath. exp. Neurol.23, 60–77 (1964).Google Scholar
  14. Luse, S. A., andK. R. Smith: The ultrastructure of senile plaques. Amer. J. Path.44, 553–563 (1964).Google Scholar
  15. Millonig, G.: A modified procedure for lead staining of thin sections J. biophys. biochem. Cytol.11, 736–739 (1961).Google Scholar
  16. Novikoff, A. B.: In: The Cell, Vol. II, Chapter 6. (Ed. byJ. Brachet andA. E. Mirsky.) New York: Acad. Press 1961.Google Scholar
  17. Pentschew, A., andK. Schwarz: Systemic axonal dystrophy in vit. E deficient adult rats. Acta neuropath. (Berl.)1, 313–334 (1962).Google Scholar
  18. Ris, H.: Personal communication fromMollenhauer.Google Scholar
  19. Seitelberger, F.: Zur Morphologie und Histochemie der degenerativen Axonveränderungen im Zentralnervensystem, III. Congr. Intern. Neuropath., Brussel, Ed. Acts med. belg., Brussel, p. 127–147 (1957).Google Scholar
  20. —, andH. Gross: Über eine spätinfantile Form der Hallervorden-Spatzschen Krankheit. Dtsch. Z. Nervenheilk.176, 104–125 (1957).Google Scholar
  21. —,E. Gootz u.H. Gross: Beitrag zur spätinfantilen Hallervorden-Spatzschen Krankheit. Acta neuropath. (Berl.)3, 16–28 (1963).Google Scholar
  22. Selye, H.: Lathyrism. Rev. canad. Biol.16, 1–82 (1957).Google Scholar
  23. Spurlock, B. O., V. C. Kattine, andJ. A. Freeman: Technical modifications in Maraglas embedding. J. Cell Biol.17, 203–204 (1963).Google Scholar
  24. Terry, R. D., andM. Weiss: Studies in Tay-Sachs disease. J. Neuropath. exp. Neurol.22, 18–66 (1963).Google Scholar
  25. —,N. K. Gonatas, andM. Weiss: Ultrastructural studies in Alzheimer's presenile dementia. Amer. J. Path.44, 269–297 (1964).Google Scholar
  26. Ule, G.: Experimenteller Neurolathyrismus. Verh. dtsch. Ges. Path.45, 333–338 (1961).Google Scholar
  27. —: Zur Ultrastruktur der Ghost-cells beim experimentellen Neurolathyrismus der Ratte. Z. Zellforsch.56, 130–142 (1962).Google Scholar
  28. Webster, H. D.: Transient focal accumulation of axonal mitochondria during the early stages of wallerian degeneration. J. Cell Biol.12, 361–383 (1962).Google Scholar
  29. Watson, M. L.: Staining of tissue sections for E. M. with heavy metals. J. biophys. biochem. Cytol.4, 475–478 (1958).Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • Shi-Ming Chou
    • 1
  • Henrik A. Hartmann
    • 1
  1. 1.Department of PathologyUniversity of Wisconsin Medical SchoolMadisonUSA

Personalised recommendations