Skip to main content
Log in

Coulomb scattering of an electron by a monopole

  • Published:
Foundations of Physics Letters

Abstract

The Coulomb scattering of an electron by a magnetic monopole is analyzed using a lowest-order quantum perturbation approximation suggested by a two-potential Lagrangian form for classical electromagnetism, generalized through the use of spacetime algebra to include magnetic monopoles. Good agreement with existing conventional analyses of this problem is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Fryberger,Found. Phys. 19, 125 (1989);Found. Phys. Lett. 3, 375 (1990).

    Google Scholar 

  2. N. Cabibbo and E. Ferrari,Nuovo Cimento 23, 1147 (1962).

    Google Scholar 

  3. M. A. de Faria-Rosa, E. Recami, and W. A. Rodrigues, Jr.,Phys. Lett. B 173, 233 (1986).

    Google Scholar 

  4. D. Hestenes,Space-Time Algebra (Gordon & Breach, New York, 1966).

    Google Scholar 

  5. J. S. R. Chisholm and R. S. Farwell, “Spin gauge theory of electric and magnetic spinors,” inMathematical Problems in Theoretical Physics, K. Osterwalder, ed. (Springer, Berlin, 1979), pp. 305–307;Proc. Roy. Soc. Lond. A377, 1 (1981).

    Google Scholar 

  6. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1963), p. 282.

    Google Scholar 

  7. Ibid., p. 100et seq.

  8. A. Rabl,Phys. Rev. 179, 1363 (1969); D. Zwanziger,Phys. Rev. D 3, 880 (1971); E. Ferrari, “Formulations of electrodynamics with magnetic monopoles,” inTachyons, Monopoles, and Related Topics, E. Recami, ed. (North-Holland, Amsterdam, 1978), pp. 203–225.

    Google Scholar 

  9. C. R. Hagen,Phys. Rev. 140, B804 (1965); F. Rohrlich,Phys. Rev. 150, 1104 (1966).

    Google Scholar 

  10. I. R. Lapidus and J. L. Pietenpol,Am. J. Phys. 28, 17 (1960).

    Google Scholar 

  11. P. Banderet,Helv. Phys. Acta. 19, 503 (1946); K. W. Ford and J. A. Wheeler,Phys. Rev. 81, 656 (1951);Ann. Phys. 7, 287 (1959).

    Google Scholar 

  12. J. Schwinger, K. A. Milton, Wu-Yang Tsai, L. L. DeRaad, Jr., and D. C. Clark,Ann. Phys. 101, 451 (1976); Y. Kazama, C. N. Yang, and A. S. Goldhaber,Phys. Rev. D 15, 2287 (1977); Y. Kazama,Int. J. Th. Phys. 17, 249 (1978).

    Google Scholar 

  13. J. D. Bjorken and S. D. Drell,op. cit., p. 145.

  14. P. A. M. Dirac,Proc. Roy. Soc. (London) A 133, 60 (1931);Phys. Rev. 74, 817 (1948).

    Google Scholar 

  15. J. Schwinger,Science 165, 757 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

1. Work supported by Department of Energy contract DE-AC03-76SF00515.

2. The idea to employ spacetime algebra (sometimes called Dirac algebra) to incorporate magnetic monopoles into classical electromagnetic theory was proposed by de Faria-Rosaet al. [3].

3. This is a factori difference between the definition of γ5 by Eq. (3) and that by Bjorken and Drell [6]. Since a cross section (without interference terms) is being calculated, we can ignore this distinction.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fryberger, D. Coulomb scattering of an electron by a monopole. Found Phys Lett 4, 459–464 (1991). https://doi.org/10.1007/BF00691191

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691191

Key words

Navigation