Archives of Microbiology

, Volume 110, Issue 2–3, pp 225–231 | Cite as

Physiological effects of the presence and absence of gas vacuoles in the blue-green alga,Microcystis aeruginosa Kuetz. emend. Elenkin

  • John Porter
  • Michael Jost


Physiological evidence was obtained for a light shielding role for gas vacuoles inMicrocystis aeruginosa Kuetz. emend. Elenkin, by comparing photosynthetic oxygen evolution, growth behaviour and pigment composition of cells with intact or collapsed gas vacuoles. The oxygen evolution rates were strongly dependent on cell concentration, a maximum rate for cells with intact gas vacuoles occurring at about 1.4×109 cells/ml and for cells with collapsed gas vacuoles at about 2.5×109 cells/ml. By using light saturation curves for oxygen evolution, it was estimated that at low light intensities up to 30% of the photosynthetically useable light was shielded at a cell concentration of 6×108 cells/ml. Collapsing the gas vacuoles twice daily did not alter the initial growth rate of the cultures, but enabled them to reach a higher final cell density. Collapsing of gas vacuoles during growth for about four generations resulted in a lower level of all acetone soluble pigments with a greater relative reduction in carotenoids than in chlorophyll a. Collapse of the gas vacuoles does not alter the cell volume. Various optical interactions which could account for light shielding are discussed.

Key words

Blue-green algae Gas vesicles Gas vacuoles Pseudovacuoles Growth Photosynthesis Oxygen evolution Pigments Light shielding Volume regulation Free space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Van Baalen, C., Brown, R. M., Jr.: The ultrastructure of the marine blue-green alga,Trichodesmium erythraeum, with special reference to the cell wall, gas vacuoles and cylindrical bodies. Arch. Mikrobiol.69, 79–91 (1969)Google Scholar
  2. Butler, W. L.: Absorption of light by turbid materials. J. Opt. Soc. Amer.52, 292–299 (1962)Google Scholar
  3. Cohen-Bazire, G., Kunisawa, R., Pfennig, N.: Comparative study of the structure of gas vacuoles. J. Bact.100, 1049–1061 (1969)Google Scholar
  4. Dinsdale, M. T., Walsby, A. E.: The interrelations of cell turgor pressure, gas vacuolation, and buoyancy in a blue-green alga. J. exp. Bot.,23, 561–570 (1972)Google Scholar
  5. Fogg, G. E.: The gas vacuoles of theMyxophyceae (Cyanophyceae). Biol. Rev.16, 205–217 (1941)Google Scholar
  6. Furth, F. W.: Effect of spherocytosis on volume of trapped plasma in a red cell column of capillary and Wintrobe hematocrits. J. Lab. clin. Med.48, 421–430 (1956)Google Scholar
  7. Gorham, P. R., McLachlan, J., Hammer, U. T., Kim, W. K.: Isolation and culture of toxic strains ofAnabaena flos-aquae (Lyngb.) de Breb. Verh. int. Verein. Limnol.15, 796–804 (1964)Google Scholar
  8. Guest, G. M., Siler, V. E.: A centrifuge method for the determination of the volume of cells in blood. J. Lab. clin. Med.19, 757–765 (1934)Google Scholar
  9. Heller, W.: Elements of the theory of light scattering. I. Scattering in gases, liquids, solutions and dispersions of small particles. In: Light scattering from dilute polymer solutions (D. McIntyre, F. Gornick, eds.), pp. 37–61. New York: Gordon and Breach 1964Google Scholar
  10. Jenkins, A., White, H. E.: Fundamentals of optics. New York: McGraw-Hill 1957Google Scholar
  11. Jones, D. D., Haug, A., Jost, M., Graber, D. K.: Ultrastructural and conformational changes in gas vacuole membranes isolated fromMicrocystis aeruginosa. Arch. Biochem. Biophys.135, 296–303 (1969)Google Scholar
  12. Jones, D. D., Jost, M.: Isolation and chemical characterization of gas vacuole membranes fromMicrocystis aeruginosa Kuetz. emend. Elenkin. Arch. Mikrobiol.70, 43–64 (1970)Google Scholar
  13. Jones, L. W., Myers, J.: Pigment variations inAnacystis nidulans induced by light of selected wavelengths. J. Phycol.1, 7–14 (1965)Google Scholar
  14. Jost, M., Jones, D. D.: Morphological parameters and macromolecular organization of gas vacuole membranes ofMicrocystis aeruginosa Kuetz. emend. Elenkin. Canad. J. Microbiol.16, 159–164 (1970)Google Scholar
  15. Jost, M., Zehnder, A.: Die Gasvakuolen der BlaualgeMicrocystis aeruginosa. Schweiz. Z. Hydrol.28, 1–3 (1966)Google Scholar
  16. Lehmann, H., Jost, M.: Kinetics of the assembly of gas vacuoles in the blue-green alga.Microcystis aeruginosa Kuetz. emend. Elenkin. Arch. Mikrobiol.79, 59–68 (1971)Google Scholar
  17. Lemmermann, E.: Algen. I. Kryptogamenflora der mark Brandenburg, herausgegeben von dem Botanischen Verein der Provinz Brandenburg, Bd. 3, S. 497–712. Leipzig: Borntraeger 1910Google Scholar
  18. Myers, J., Kratz, A. W.: Relations between pigment content and photosynthetic characteristics in a blue-green alga. J. gen. Physiol.39, 11–22 (1955)Google Scholar
  19. Petter, H. F. M.: Over roode en andere bakterien van getzouten visch. Doctoral thesis, University of Utrecht, Holland (1932)Google Scholar
  20. Pfennig, N., Cohen-Bazire, G.: Some properties of the green bacteriumPelodictyon clathratiforme. Arch. Mikrobiol.59, 226–236 (1967)Google Scholar
  21. Rabinowitch, E., Govindjee: Photosynthesis. New York: Wiley 1969Google Scholar
  22. Salton, M. R. J.: The bacterial cell wall. Amsterdam: Elsevier 1964Google Scholar
  23. Schacter, B., Eley, J. H., Gibbs, M.: Involvement of photosynthetic carbon reduction cycle intermediates in CO2 fixation and O2 evolution by isolated chloroplasts. Plant Physiol.48, 707–711 (1971)Google Scholar
  24. Stanier, R. Y., van Niel C. B.: The concept of a bacterium. Arch. Mikrobiol.42, 17–35 (1962)Google Scholar
  25. Waaland, J. R., Waaland, S. D.: Light induced gas vacuoles and their effect on light absorption by the blue-green alga,Nostoc muscorum. J. Phycol.6, Suppl. 7 (1970)Google Scholar
  26. Waaland, J. R., Waaland, S. D., Branton, D.: Gas vacuoles: Light shielding in blue-green algae. J. Cell Biol.48, 212–215 (1970)Google Scholar
  27. Walsby, A. E.: The permeability of blue-green algal gas-vacuole membranes. Proc. roy. Soc. B73, 235–255 (1969)Google Scholar
  28. Walsby, A. E.: The pressure relationships of gas vacuoles. Proc. roy. Soc. B.178, 301–326 (1971)Google Scholar
  29. Walsby, A. E.: Structure and function of gas vacuoles. Bact. Rev.36, 1–32 (1972)Google Scholar
  30. Wendlandt, W. W., Hecht, H. G.: Reflectance spectroscopy. New York: Interscience 1966Google Scholar
  31. West, K. R., Wiskich, J. T.: Photosynthetic control by isolated pea chloroplasts. Biochem. J.109, 527–532 (1968)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • John Porter
    • 1
    • 2
  • Michael Jost
    • 1
    • 2
  1. 1.MSU-ERDA Plant Research LaboratoryMichigan State UniversityEast LansingUSA
  2. 2.Department of Botany and Plant PathologyMichigan State UniversityEast LansingUSA

Personalised recommendations