Foundations of Physics Letters

, Volume 2, Issue 1, pp 81–104 | Cite as

Geometro-stochastic quantization of gravity. I

  • Eduard Prugovečki
Article

Abstract

A general method of geometro-stochastic first quantization is outlined, and then applied to the construction of a graviton bundleE. This quantization is performed by treating the graviton as a massless stringlike exciton of spin 2, whose states can be represented by the vectors in the bundleE over a base manifoldM of mean spacetime locations. The graviton bundleE carries an indefinite inner product, and possesses both external Poincaré gauge degrees of freedom, as well as internal gauge degrees of freedom related to general changes of coordinates in an immediate neighbourhood of eachxM.

Key words

gravitons stringlike excitons stochastic parallel transport geometro-stochastic propagation quantum fibre bundles Poincaré gauge invariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Rosenfeld,Ann. Phys. (Leipzig) 5, 113 (1930);Z. Phys. 65, 589 (1930).Google Scholar
  2. 2.
    T. Christodoulakis and J. Zanelli,Class. Quantum Grav. 4, 851 (1987).Google Scholar
  3. 3.
    C. J. Isham, inQuantum Gravity 2, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford, 1981).Google Scholar
  4. 4.
    B. S. DeWitt, inGeneral Relativity—An Einstein Centenary Survey, S. W. Hawking and W. Israel, eds. (Cambridge University Press, Cambridge, 1979).Google Scholar
  5. 5.
    C. Teitelboim,Phys. Rev. D 25, 3159 (1982).Google Scholar
  6. 6.
    J. Hartle and S. W. Hawking,Phys. Rev. D 28, 2960 (1983).Google Scholar
  7. 7.
    A. Ashtekar, inGeneral Relativity and Gravitation, B. Bertotti, F. DeFelice, and A. Pascolini, eds. (Reidel, Dordrecht, 1984).Google Scholar
  8. 8.
    C. J. Isham and A. C. Kakas,Class. Quantum Grav. 1, 621, 633 (1984).Google Scholar
  9. 9.
    J. Wess and J. Bagger,Supersymmetry and Supergravity (Princeton Unviersity Press, Princeton, 1983).Google Scholar
  10. 10.
    P. A. M. Dirac,Can. J. Math. 2, 129 (1950).Google Scholar
  11. 11.
    P. A. M. Dirac,Proc. Roy. Soc. (London) A 246, 326, 333 (1958);Phys. Rev. 114, 924 (1959).Google Scholar
  12. 12.
    P. A. M. Dirac, inContemporary Physics, Vol. 1, Trieste Symposium (IAEA, Vienna, 1968).Google Scholar
  13. 13.
    M. B. Green, J. H. Schwarz, and E. Witten,Superstring Theory: 1 (Cambridge Unviersity Press, Cambridge, 1987).Google Scholar
  14. 14.
    E. Prugovečki,Stochastic Quantum Mechanics and Quantum Spacetime, corrected printing (Reidel, Dordrecht, 1986).Google Scholar
  15. 15.
    E. Prugovečki,Found. Phys. 14, 1147 (1984).Google Scholar
  16. 16.
    N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved Space, corrected printing (Cambridge Unviersity Press, Cambridge, 1986).Google Scholar
  17. 17.
    T. W. B. Kibble, inQuantum Gravity 2, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford, 1981).Google Scholar
  18. 18.
    M. J. Duff, inQuantum Gravity 2, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford, 1981).Google Scholar
  19. 19.
    P. C. W. Davies, inQuantum Theory of Gravity, S. M. Chritensen, ed. (Adam Hilger, Bristol, 1984).Google Scholar
  20. 20.
    E. Prugovečki,Nuovo Cimento A 97, 597 (1987).Google Scholar
  21. 21.
    E. Prugovečki,Nuovo Cimento A 97, 837 (1987).Google Scholar
  22. 22.
    E. Prugovečki,Class. Quantum Grav. 4, 1659 (1987).Google Scholar
  23. 23.
    E. Prugovečki,Nuovo Cimento A 89, 105 (1985).Google Scholar
  24. 24.
    E. Prugovečki and S. Warlow, “On geometro-stochastic Dirac fields in curved spacetime,” University of Toronto preprint.Google Scholar
  25. 25.
    E. Prugovečki, “Geometro-stochastic quantization of gauge fields in curved spacetime,”Nuovo Cimento A 100, No. 6 (1988) (in press).Google Scholar
  26. 26.
    S. T. Ali and E. Prugovečki,Acta Appl. Math. 6, 47 (1986).Google Scholar
  27. 27.
    C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973).Google Scholar
  28. 28.
    E. Prugovečki,Nuovo Cimento A 100, 289 (1988).Google Scholar
  29. 29.
    E. Prugovečki, “Generally covariant geometro-stochastic quantum gravity,” University of Toronto preprint.Google Scholar
  30. 30.
    M. Spivak,Differential Geometry, Vol. II, 2nd edn. (Publish or Perish, Wilmington, Delaware, 1979).Google Scholar
  31. 31.
    W. Drechsler,Fortschr. Phys. 32, 449 (1984).Google Scholar
  32. 32.
    J. A. Brooke and E. Prugovečki,Nuovo Cimento A 89, 126 (1985).Google Scholar
  33. 33.
    E. Prugovečki,Quantum Mechanics in Hilbert Space, 2nd edn. (Academic Press, New York, 1981).Google Scholar
  34. 34.
    J. Bognár,Indefinite Inner Product Spaces (Springer, Berlin, 1974).Google Scholar
  35. 35.
    R. Arnowitt, S. Deser, and C. W. Misner, inGravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York, 1962).Google Scholar
  36. 36.
    K. Itô,Proceedings, International Congress on Mathematics, Stockholm, pp. 536–539 (1962).Google Scholar
  37. 37.
    E. B. Dynkin,Soviet Math. Dokl. 179, 532 (1968).Google Scholar
  38. 38.
    K. Itô,Springer Lecture Notes in Mathematics, Vol. 451, pp. 1–7 (1975).Google Scholar
  39. 39.
    Yu. L. Daletskii,Russian Math. Surveys 38, 97 (1983).Google Scholar
  40. 40.
    M. J. Duff, inQuantum Gravity, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford, 1975).Google Scholar
  41. 41.
    S. W. Hawking, inQuantum Gravity, C. J. Isham, R. Penrose, and D. W. Sciama, eds. (Clarendon Press, Oxford, 1975).Google Scholar
  42. 42.
    S. Deser,Gen. Rel. Grav. 1, 9 (1970).Google Scholar
  43. 43.
    E. Prugovečki, “Geometro-stochastic quantization of gravity. II,”Found. Phys. Lett. 2, No. 2 (1989), to appear.Google Scholar
  44. 44.
    E. Prugovečki, “On stochastic parallel transport of test bodies in quantum gravity,” University of Toronto preprint.Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • Eduard Prugovečki
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations