Skip to main content
Log in

Einstein-Podolsky-Rosen experiments: the structure of the probability space. I

  • Published:
Foundations of Physics Letters

Abstract

Incompatibility of measurements, central to quantum mechanics, is captured in the formalism of empirical logic, which is based on a generalization of the notion of a sample space in Kolmogoroff's axiomatic theory of probability. In composite empirical systems of the kind considered in the Einstein-Podolsky-RosenGedankenexperiment, incompatibility gives rise to the notion of influence, which is closely related to stochastic independence.

These concepts are used to study the methodological structure of a large class of Einstein-Podolsky-Rosen type experiments, linking a series of much debated issues such as scientific Realism, ontological and epistemic uncertainty, determinism, locality, separability, factorizability, completeness, conservation, correlation, Bell-Clauser-Horne inequalities, and hidden-variables models to an axiomatic probability theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aerts, D.:“Description of Many Physical Entities Without the Paradoxes Encountered in Quantum Mechanics,”Foundations of Physics 12, 1131 (1982).

    Google Scholar 

  2. Aspect, A., Dalibard, J., Roger, G.: “Experimental Test of Bell's Inequalities Using Variable Analyzers,”Phys. Rev. Lett. 49, 1804–1807 (1982).

    Google Scholar 

  3. Belinfante, F.:A Survey of Hidden-Variables Theories (Pergamon, New York, 1973).

    Google Scholar 

  4. Bell, J.S.: “On the Einstein-Rosen-Podolsky Paradox,”Physics 1, 195–200 (1964).

    Google Scholar 

  5. Beltrametti, E.G., Cassinelli, G.:The Logic of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1981).

    Google Scholar 

  6. Birkhoff, G., von Neumann, J.: “The Logic of Quantum Mechanics,”Ann. Math. 37(4), 823–843 (1936).

    Google Scholar 

  7. Brøndsted, A.:An Introduction to Convex Polytopes (Graduate Texts in Mathematics90) (Springer-Verlag, New York 1983).

    Google Scholar 

  8. Clauser, J.F., Horne, M.A.: “Experimental Consequences of Objective Local Theories,”Phys. Rev. D 10, 526–535 (1974).

    Google Scholar 

  9. Cook, T.A.: “Banach Spaces of Weights on Quasimanuals,”Int. J. Theoret. Phys. 24, 1113–1131 (1985).

    Google Scholar 

  10. Dirac, P.A.M.:The Principles of Quantum Mechanics, 1st edn. (Clarendon Press, Oxford, 1930).

    Google Scholar 

  11. Einstein, A., Podolsky, B., Rosen, N.: “Can Quantum Mechanical Description of Physical Reality Be Considered Complete?”Phys. Rev. 47, 777–780 (1935).

    Google Scholar 

  12. d'Espagnat, B.:In Search of Reality (Springer, New York, 1983).

    Google Scholar 

  13. Fine, A.: “Hidden Variables, Joint Probability, and the Bell Inequalities,”Phys. Rev. Lett. 48(5), 291–295 (1 February 1982).

    Google Scholar 

  14. Fine, A.: “Joint Distributions, Quantum Correlations, and Commuting Observables,”J. Math. Phys. 23(7), 1306–1310 (1982).

    Google Scholar 

  15. Fine, A.: “Antinomies of Entanglement: The Puzzling Case of the Tangled Statistics,”J. Phil. LXXIX(12), 733–747 (1982).

    Google Scholar 

  16. Fine, A.:The Shaky Game: Einstein, Realism and the Quantum Theory (The University of Chicago Press, Chicago, 1986).

    Google Scholar 

  17. Fischer, H.R., Rüttimann, G.T.: “Limits of Manuals and Logics,” inMathematical Foundations of Quantum Theory, A.R. Marlow, ed. (Academic, New York, 1978), pp. 127–152.

    Google Scholar 

  18. Foulis, D.J., Piron, C., Randall, C.H.: “Realism, Operationalism, and Quantum Mechanics,”Found. Phys. 13(8), 813–841 (1983).

    Google Scholar 

  19. Foulis, D.J., Randall, C.H.: “Operational Statistics. I. Basic Concepts,”J. Math. Phys. 13, 1667–1675 (1972).

    Google Scholar 

  20. Foulis, D.J., Randall, C.H.: “Empirical Logic and Quantum Mechanics,”Synthese 29, 81–111 (1974).

    Google Scholar 

  21. Foulis, D.J., Randall, C.H.: “Manuals, Morphisms, and Quantum Mechanics,” inMathematical Foundations of Quantum Theory, A.R. Marlow, ed. (Academic, New York, 1978).

    Google Scholar 

  22. Foulis, D.J., Randall, C.H.: “Empirical Logic and Tensor Products,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, 1981), pp. 9–20.

    Google Scholar 

  23. Foulis, D.J., Randall, C.H.: “Dirac Revisited,” inSymposium on the Foundations of Modern Physics, P. Lahti and P. Mittelstaedt, eds. (World Scientific, Singapore, 1985), pp. 97–112.

    Google Scholar 

  24. Garg, A., Mermin, N.D.: “Correlation Inequalities and Hidden Variables,”Phys. Rev. Lett. 49(17), 1220–1223 (25 Oct. 1982).

    Google Scholar 

  25. Gerelle, E.R., Greechie, R.J., Miller, F.R.: “Weights on Spaces,” inPhysical Reality and Mathematical Description, E.P. Enz and J. Mehra, eds. (Reidel, Dordrecht, 1974), pp. 169–192.

    Google Scholar 

  26. Gleason, A.: “Measures on the Closed Subspaces of a Hilbert Space,”J. Math. and Mech. 6, 885–893 (1957).

    Google Scholar 

  27. Greechie, R.J., Gudder, S.P.: “Quantum Logics,” inContemporary Research in the Foundations and Philosophy of Quantum Theory, C.A. Hooker, ed. (Reidel, Dordrecht, 1973), pp. 143–173.

    Google Scholar 

  28. Grünbaum, B.:Convex Polytopes (Interscience, London, 1967).

    Google Scholar 

  29. Gudder, S.P.:Stochastic Methods in Quantum Mechanics(North-Holland, New York, 1979).

  30. Gudder, S.P.: “Logical Cover Spaces,”Annales de l'Institut Henri Poincaré 45, 327–337 (1986).

    Google Scholar 

  31. Gudder, S.P., Kläy, M.P., Rüttimann, G.T.: “States on Hypergraphs,”Demonstratio Mathematica 19(2), 503–526 (1986).

    Google Scholar 

  32. Gudder, S.P., Rüttimann, G.T., Greechie, R.J.: “Measurement, Hilbert Space and Quantum Logic,”J. Math. Phys. 23, 2381–2386 (1982).

    Google Scholar 

  33. Heraklites: Diels-Kranz Fragment 22 B 107.

  34. Hill, T.L.:Statistical Mechanics: Principles and Selected Applications (Dover, New York, 1987).

    Google Scholar 

  35. Jammer, M.:The Philosophy of Quantum Mechanics (Wiley, New York, 1974).

    Google Scholar 

  36. Jarrett, J.P.: “On the Physical Significance of the Locality Conditions in the Bell Arguments,”Noûs 18, 569–589 (1984).

    Google Scholar 

  37. Jarrett, J.P.: “An Analysis of the Locality Assumption in the Bell Arguments,” inFundamental Questions in Quantum Mechanics, L.M. Roth and A. Inomata, eds. (Gordon & Breach, New York, 1986), pp. 21–28.

    Google Scholar 

  38. Jarrett, J.P.: “Bell's Theorem: A Guide to the Implications,” Talk at the UC Berkeley Philosophy Department (7 May 1987).

  39. Jauch, J.M.:Foundations of Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1968).

    Google Scholar 

  40. Kalmbach, G.:Orthomodular Lattices (Academic, New York, 1983).

    Google Scholar 

  41. Kläy, M.P.:Stochastic Models on Empirical Systems, Empirical Logics and Quantum Logics, and States on Hypergraphs, Dissertation, Universität Bern 1985.

  42. Kläy, M.P. “Quantum Logic Properties of Hypergraphs,”Found. Phys. 17(10), 1019–1036 (1987).

    Google Scholar 

  43. Kläy,M.P., Randall,C.H., Foulis,D.J.: “Tensor Products and Probability Weights,”Int.J.Theoret.Phys. 26(3), 199–219(1987).

    Google Scholar 

  44. Kolmogoroff, A.:Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer-Verlag, Berlin, 1933).

    Google Scholar 

  45. Laplace, P.S.:Essai Philosophique sur les Probabilités (Chiron, Paris, 1920) (1st edn. 1814).

    Google Scholar 

  46. Mackey, G.W.:Mathematical Foundations of Quantum Mechanics (Benjamin/Cummings, Reading, Massachusetts, 1963).

    Google Scholar 

  47. Mermin, N.D.: “Bringing Home the Atomic World: Quantum Mysteries for Anybody,”Am. J. Phys. 49(10), 940–943 (1981).

    Google Scholar 

  48. Mermin, N.D.: “The EPR Experiment — Thoughts About the ‘Loophole’,” inNew Techniques and Ideas in Quantum Measurement Theory, D.M. Greenberger, ed. (New York Academy of Sciences, New York, 1986), pp. 422–427.

    Google Scholar 

  49. von Neumann, J.:Mathematische Grundlagen der Quantenmechanik (Springer-Verlag, Berlin 1932).

    Google Scholar 

  50. Pauli, W.:General Principles of Quantum Mechanics (Springer-Verlag, Berlin, 1980).

    Google Scholar 

  51. Piccioni, O., Mehlhop, W.: “A Discussion of the EPR Contained in Quantum Mechanical Terms Without Arguments of Realities or Bell's Relations,” inNew Techniques and Ideas in Quantum Measurement Theory, D.M. Greenberger, ed. (New York Academy of Sciences, New York, 1986).

    Google Scholar 

  52. Popper, K.: “Realism in Quantum Mechanics and a New Version of the EPR Experiment,” inOpen Questions in Quantum Physics, G. Tarozzi and A. van der Merwe, eds. (Reidel, Dordrecht, 1985).

    Google Scholar 

  53. Randall, C.H., Foulis, D.J.: “An Approach to Empirical Logic,”Am. Math. Monthly 77(4), 363–373 (April 1970).

    Google Scholar 

  54. Randall, C.H., Foulis, D.J.: “Operational Statistics II. Manuals of Operations and their Logics,”J. Math. Phys. 14, 1472–1480 (1973).

    Google Scholar 

  55. Randall, C.H., Foulis, D.J.: “Operational Statistics and Tensor Products,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, -1981), pp. 21–28.

    Google Scholar 

  56. Randall, C.H., Foulis, D.J.: “A Mathematical Language for Quantum Physics,” inTransactions of the 25e Cours de perfectionnement de l'Association Vaudoise des Chercheurs en Physique: Les Fondements de la Mécanique Quantique, C. Gruber, C. Piron, T. Minhtôm, and R. Weill, eds. (Montana, Switzerland, 1983), pp. 193–226.

  57. Randall, C.H., Foulis, D.J.: “Properties and Operational Propositions in Quantum Mechanics,”Found. Phys. 13(8), 843–857 (1983).

    Google Scholar 

  58. Randall, C.H., Foulis, D.J.: “Stochastic Entities,” inRecent Developments in Quantum Logic, P. Mittelstaedt and E. Stachow, eds. (Bibliographisches Institut, Mannheim, 1985), pp. 265–284.

    Google Scholar 

  59. Rüttimann, G.T.: “Detectable Properties and Spectral Quantum Logics,” inInterpretations and Foundations of Quantum Theory, H. Neumann, ed. (Bibliographisches Institut, Mannheim, 1981), pp. 35–47.

    Google Scholar 

  60. Rüttimann, G.T.:Ordered Vector Spaces, Quantum Logics and Convexity, Lecture Notes, University of Denver, 1981.

  61. Schrödinger, E.: “Die Gegenwärtige Situation der Quantenmechanik,”Naturwiss. 23, 807–812, 824–828, 844–849 (1935).

    Google Scholar 

  62. Shimony, A.: “Contextual Hidden Variables Theories and Bell's Inequalities,”Brit. J. Phil. Sc. 35, 25–45 (1984).

    Google Scholar 

  63. Shimony, A.: “The Significance of Jarrett's ‘Completeness’ Condition,” inFundamental Questions in Quantum Mechanics, L.M. Roth and A. Inomata, eds. (Gordon & Breach, New York, 1986).

    Google Scholar 

  64. Shimony, A.: “Events and Processes in the Quantum World,” inQuantum Concepts in Space and Time, R. Penrose and C.J. Isham, eds. (Oxford Science Publications, Clarendon Press, Oxford, 1986).

    Google Scholar 

  65. Skyrms, B.: “Counterfactual Definiteness and Local Causation,”Phil. Sc. 49, 43–50 (1982).

    Google Scholar 

  66. Stapp, H.P.: “S-matrix Interpretation of Quantum Theory,”Phys. Rev. D 3, 1303–1320 (1971).

    Google Scholar 

  67. Suppes, P., Zanotti, M.: Preprint, Stanford University 1987.

  68. Varadarajan, V.S.:Geometry of Quantum Theory (Van Nostrand, London, 1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

1. My translation. Fine infers a missing “not” in the first part of the sentence and translates “I can not reconcile myself to the following, that a manipulation undertaken on A has an influence on B...”. I do not dispute that Einstein could not reconcile himself with such a postulate of influence, and thus I agree with Fine's comments on this sentence. However, the German original needs no negation if one surmises that Einstein writes about the consequences of ahypothesis of influence.

2. The quasimanualAB consists of all subsets ofXY of the form ⋃ xE xF x, whereEA andF xB for allxE can be chosen in all possible ways, together with the symmetrical subsets ofXY, where the rôle ofA andB is exchanged. See Refs. [22,43,55] for the technical details.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kläy, M.P. Einstein-Podolsky-Rosen experiments: the structure of the probability space. I. Found Phys Lett 1, 205–244 (1988). https://doi.org/10.1007/BF00690066

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690066

Keywords

Navigation