Archives of Microbiology

, Volume 121, Issue 2, pp 147–153 | Cite as

Methanogenium, a new genus of marine methanogenic bacteria, and characterization ofMethanogenium cariaci sp. nov. andMethanogenium marisnigri sp. nov.

  • J. A. Romesser
  • R. S. Wolfe
  • F. Mayer
  • E. Spiess
  • A. Walther-Mauruschat


A new genus of marine methanogenic bacteria and two species within this genus are described.Methanogenium is the proposed genus andMethanogenium cariaci the type species. Cells of the type species are Gram-negative, peritrichously flagellated, irregular cocci with a periodic wall surface pattern. Colonies formed by these bacteria are yellow, circular and umbonate with entire edges. The DNA base composition is 52 mol% guanine plus cytosine. Formate or hydrogen and carbon dioxide serve as substrates for growth. Cells ofMethanogenium marisnigri are of similar shape but smaller diameter thanM. cariaci. The colonies ofM. marisnigri are convex, and the DNA base composition is 61 mol % G+C. Formate or hydrogen and carbon dioxide are growth substrates. Sodium chloride is required for growth of both methanogens.

Key words

Methanogenium cariaci Methanogenium marisnigri Marine methanogenic bacteria Ultrastructure TaxonomyMethanogenium gen. nov. 



sodium dodecylsulfate


piperazine-N,N′-bis (2 ethanesulfonic acid)


coenzyme M, 2-mercaptoethanesulfonic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aranki, A., Freter, R.: Use of anaerobic glove boxes for the cultivation of strictly anaerobic bacteria. Am. J. Clin. Nutr.25, 1329–1334 (1972)Google Scholar
  2. Balch, W. E., Wolfe, R. S.: New approach to the cultivation of methanogenic bacteria; 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth ofMethanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol.36, 781–791 (1976)Google Scholar
  3. Balch, W. E., Wolfe, R. S.: Specificity and biological distribution of coenzyme M (2-mercaptoethane sulfonic acid). J. Bacteriol.137, 256–263 (1979)Google Scholar
  4. Barker, H. A.: Bacterial fermentations. New York: John Wiley and Sons (1956)Google Scholar
  5. Bryant, M. P.: Methane-producing bacteria. In: Bergey's manual of determinative bacteriology, (Buchanan, R. E., Gibbons, N. E., ed.). 8th ed. pp. 472–477. Baltimore: MD, Williams and Wilkins Co., 1974Google Scholar
  6. Bryant, M. P., Robinson, I. M.: An improved nonselective culture medium for ruminal bacteria and its use in determining diurnal variation in number of bacteria in the rumen. J. Dairy. Sci.44, 1446–1456 (1961)Google Scholar
  7. Costerton, J. W., Ingram, J. M., Cheng, K.-J.: Structure and function of the cell envelope of Gram-negative bacteria. Bacteriol. Rev.38, 87–110 (1974)Google Scholar
  8. Fox, G. E., Magrum, L. S., Balch, W. E., Wolfe, R. S., Woese, C. R.: Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc. Natl. Acad. Sci.74, 4537–4541 (1977)Google Scholar
  9. Glauert, A. M., Thornley, M. J.: The topography of the bacterial cell wall. Ann. Rev. Microbiol.23, 159–198 (1969)Google Scholar
  10. Hungate, R. E.: The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev.14, 1–49 (1950)Google Scholar
  11. Jones, J. B., Bowers, B., Stadtman, T. C.:Methanococcus vannielii: ultrastructure and sensitivity to detergents and antibiotics. J. Bacteriol.130, 1357–1363 (1977)Google Scholar
  12. Kandler, O., Koenig, H.: Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Microbiol.118, 141–152 (1978)Google Scholar
  13. Lamontagne, R. A., Swinnerton, J. W., Linnenbom, V. J., Smith, W. D.: Methane concentrations in various marine environments. J. Geophys. Res.78, 5317–5323 (1973)Google Scholar
  14. Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol.3, 2317–2324 (1961)Google Scholar
  15. Mayer, F., Lurz, R., Schoberth, S.: Electron microscopic investigation of the hydrogen-oxidizing acetate-forming anaerobic bacteriumAcetobaterium woodii. Arch. Microbiol.115, 207–213 (1977)Google Scholar
  16. Schildkraut, C. L., Marmur, J., Doty, P.: Determination of base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. Mol. Biol.4, 430–443 (1962)Google Scholar
  17. Spurr, A. R.: A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res.26, 31–43 (1969)Google Scholar
  18. Valentine, R. C., Shapiro, B. M., Stadtman, E. R.: Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme fromEscherichia coli. Biochemistry7, 2143–2152 (1968)Google Scholar
  19. Wolin, E. A., Wolin, M. J., Wolfe, R. S.: Formation of methane by bacterial extracts. J. Biol. Chem.238, 2882–2886 (1963)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. A. Romesser
    • 1
  • R. S. Wolfe
    • 1
  • F. Mayer
    • 2
  • E. Spiess
    • 2
  • A. Walther-Mauruschat
    • 2
  1. 1.Department of MicrobiologyUniversity of IllinoisUrbanaUSA
  2. 2.Institut für Mikrobiologie der Universität GöttingenGöttingenFederal Republic of Germany

Personalised recommendations