Archives of Microbiology

, Volume 121, Issue 2, pp 121–127 | Cite as

The effects of temperature on the fatty acid and phospholipid composition of four obligately psychrophilicVibrio Spp.

  • M. Bhakoo
  • R. A. Herbert
Article

Abstract

The free fatty acid and phospholipid composition of 4 psychrophilic marineVibrio spp. have been determined in chemostat culture with glucose as the limiting substrate over a temperature range 0–20°C. All the isolates show maximum glucose and lactose uptake at 0°C and this correlates with maximum cell yield. None of the isolates contain fatty acids with a chain length exceeding 17 carbon atoms.Vibrio AF-1 andVibrio AM-1 respond to decreased growth temperatures by synthesizing increased proportions of unsaturated fatty acids (C15:1, C16:1 and C17:1) whereas inVibrio BM-2 the fatty acids undergo chain length shortening. The fourth isolate (Vibrio BM-4) contains high levels (60%) of hexadecenoic acid at all growth temperatures and the fatty acid composition changes little with decreasing temperature. The principal phospholipid components of the four psychrophilic vibrios were phosphatidylserine, phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Lyso-phosphatidylethanolamine and 2 unknown phospholipids were additionally found inVibrio AF-1. The most profound effect of temperature on the phospholipid composition of these organisms was the marked increase in the total quantities synthesized at 0°C. At 15°C phosphatidylglycerol accumulated in the isolates as diphosphatidylglycerol levels decreased. Additionally inVibrio BM-2 andVibro BM-4 phosphatidylserine accumulates as phosphatidylethanolamine biosynthesis was similarly impaired. The observed changes in fatty acid and phospholipid composition in these organisms at 0°C may explain how solute transport is maintained at low temperature.

Key words

Psychrophiles Vibrio Fatty acids Phospholipids Cell yield Substrate uptake 

Abbreviations

PS

Phosphatidylserine

PE

phosphatidylethanolamine

PG

phosphatidylglycerol

DPG

diphosphatidylglycerol

lyso PE

lysophosphatidylethanolamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackman, R. G.: Structural correlation of unsaturated fatty acid esters through graphical comparison of gas liquid chromatographic retention times on a polyester substrate. J. Am. Oil Chem. Soc.40, 558–564 (1963)Google Scholar
  2. Baker, K.: Low cost continuous culture apparatus. Lab. Pract.17, 817–821 (1968)Google Scholar
  3. Baxter, R. M., Gibbons, N. E.: Observations on the physiology of psychrophilism in a yeast. Can. J. Microbiol.8, 511–517 (1962)Google Scholar
  4. Brown, C. M., Rose, A. H.: Fatty acid composition ofCandida utilis as affected by growth temperature and dissolved oxygen tension. J. Bacteriol.99, 371–378 (1969)Google Scholar
  5. Brown, C. M., Minnikin, D. E.: The effect of growth temperature on the fatty acid composition of some psychrophilic marine Pseudomonads. J. Gen. Microbiol.75 IX (1973)Google Scholar
  6. Byrne, P., Chapman, D.: Liquid crystalline nature of phospholipids. Nature (Lond.)202, 287 (1964)Google Scholar
  7. Cowan, S. T., Steel, K. J.: Identification of medical bacteria. Cambridge University Press (1965)Google Scholar
  8. Cullen, J., Phillips, M. C., Shipley, G. G.: The effects of temperature on the composition and physical properties of the lipids ofPs. fluorescens. Biochem. J.125, 733–742 (1971)Google Scholar
  9. De Voe, I. W., Oginsky, E. L.: Cation interactions and biochemical composition of the cell envelope of a marine bacterium. J. Bacteriol.98, 1368–1377 (1969)Google Scholar
  10. Farrell, J., Rose, A. H.: Temperature effects on microorganisms. In: Thermobiology (A. H. Rose, ed.), pp. 147–219. London, New York: Academic Press 1967Google Scholar
  11. Gaughran, E. R. L.: The saturation of bacterial lipids. J. Bacteriol.53, 506 (1947)Google Scholar
  12. Herbert, R. A., Bell, C. R.: Growth characteristics of an obligately psychrophilicVibrio sp. Arch. Microbiol.113, 215–220 (1977)Google Scholar
  13. Hunter, K., Rose, A. H.: Influence of growth temperature on the composition and physiology of microorganisms. J. Appl. Chem. Biotechnol.22, 527–540 (1972)Google Scholar
  14. Ingraham, J. L., Bailey, G. F.: Comparative effects of temperature on metabolism of mesophilic and psychrophilic bacteria. J. Bacteriol.77, 609–613 (1959)Google Scholar
  15. Kanfer, J., Kennedy, E. P.: Metabolism and function of bacterial lipids. II. Biosynthesis of phospholipids inE. coli. J. Biol. Chem.239, 1720–1726 (1964)Google Scholar
  16. Kates, M.: Techniques of lipidology. In: Laboratory techniques in biochemistry and molecular biology. (T. S. Work, E. Work, eds.), pp. 461–462. Amsterdam: North Holland Publishing Company 1972Google Scholar
  17. Kates, M., Baxter, R. M.: Lipid composition of mesophilic and psychrophilic yeasts (Candida sp.) as influenced by environmental temperatures. Can. J. Biochem. Physiol.40, 1213–1227 (1962)Google Scholar
  18. Kates, M., Hagen, P. O.: Influence of temperature on fatty acid composition of mesophilic and psychrophilicSerratia sp. Can. J. Biochem.42, 481–488 (1964)Google Scholar
  19. Kenis, P. R., Morita, R. Y.: Thermally induced leakage of cellular material and viability inV. marinus, a psychrophilic marine bacterium. Can. J. Microbiol.14, 1239–1244 (1968)Google Scholar
  20. Lawrence, N. L., Wilson, D. C., Pederson, C. S.: The growth of yeasts in juice stored at low temperature. App. Microbiol.7, 7–11 (1959)Google Scholar
  21. Morita, R. Y., Buck, G. E.: Low temperature inhibition of substrate uptake. In: Effect of the ocean environment on microbial activities. (R. R. Colwell, R. Y. Morita, eds.), pp. 124–129. Maryland: University Park Press 1974Google Scholar
  22. Morita, R. Y.: Psychrophilic Bacteria. Bacteriol Rev.39, 144–167 (1975)Google Scholar
  23. Olsen, R. H., Metcalf, E. S.: Conversion of mesophilic to psychrophilic bacteria. Science162, 1288–1289 (1968)Google Scholar
  24. Okuyuma, H.: Phospholipid metabolism inE. coli after a shift in temperature. Biochem. Biophys. Acta176, 125–134 (1969)Google Scholar
  25. Oliver, J. D., Colwell, R. R.: Extractable lipids of Gram-negative marine bacteria: phospholipid composition. J. Bacteriol.114, 897–908 (1973)Google Scholar
  26. Rose, A. H., Evison, L. M.: Studies on the biochemical basis of the minimum growth temperatures for growth of certain psychrophilic and mesophilic microorganisms. J. Gen. Microbiol.38, 131–141 (1965)Google Scholar
  27. Russell, N. J.: Alteration in fatty acid chain length inMicrococcus cryophilus grown at different temperatures. Biochim. Biophys. Acta,231, 254–256 (1971)Google Scholar
  28. Shewan, J. M., Hobbs, G., Hodgkiss, W.: A determinative scheme for the identification of certain genera of Gram-negative bacteria with special reference to thePseudomonadaceae. J. Appl. Bacteriol.23, 379–390 (1960)Google Scholar
  29. Short, S. A., White, D. C.: Biosynthesis of cardiolipin from phosphatidyl glycerol inS. aureus. J. Bacteriol.109, 820–826 (1962)Google Scholar
  30. Watson, K., Arthur, H., Shipton, W. A.: Leucosporidium yeasts: obligate psychrophiles which alter membrane lipid and cytochrome composition with temperature. J. Gen. Microbiol.97, 11–18 (1976)Google Scholar
  31. Wilkins, P. O., Bourgeois, R., Murray, R. G. E.: Psychotrophic properties ofListeria monocytogenes. Can. J. Microbiol.18 543–551 (1972)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. Bhakoo
    • 1
  • R. A. Herbert
    • 1
  1. 1.Department of Biological SciencesThe UniversityDundee(Scotland)

Personalised recommendations