Archives of Microbiology

, Volume 121, Issue 2, pp 117–120 | Cite as

Glutamine synthetase activity, ammonia assimilation and control of nitrate reduction in the unicellular red algaCyanidium caldarium

  • Carmelo Rigano
  • Vittoria Di Martino Rigano
  • Vincenza Vona
  • Amodio Fuggi


Addition ofl-methionine-dl-sulphoximine to cells ofCyanidium caldarium brings about a loss of glutamine synthetase activity. Concomitantly ammonia assimilation is prevented.

Under physiological conditions nitrate reductase [NAD(P)H: nitrate oxidoreductase EC] is reversibly converted into an inactive enzyme upon addition of ammonia. In the presence of methionine sulphoximine, when glutamine synthetase activity is lost, nitrate reductase is no longer inactivated by ammonia. It is suggested that ammonia itself is not the actual effector of nitrate reductase inactivation.

Concomitantly with the failure of nitrate reductase to undergo ammonia-inactivation, in the presence of methionine sulphoximine nitrate reduction is an uncontrolled process, thus, in media with nitrate ammonia continues to be produced and excreted into the external medium at a constant rate.

Key words

Cyanidium Red algae Nitrate reductase control 



Nitrate reductase


Glutamine synthetase


Glutamate syntase




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Gordon, J. K., Brill, W. J.: Derepression of nitrogenase synthesis in the presence of excess NH4+. Biochem. Biophys. Res. Commun.59, 967–971 (1974)Google Scholar
  2. Lawrie, A. C., Codd, G. A., Stewart, W. D. P.: The incorporation of nitrogen into products of recent photosynthesis inAnabaena cylindrica Lemm. Arch. Microbiol.107, 15–24 (1976)Google Scholar
  3. Losada, M., Paneque, A., Aparicio, P. J., Vega, J. Ma, Cardenas, J., Herrera, J.: Inactivation and repression by ammonium of the nitrate reducing system inChlorella. Biochem. Biophys. Res. Commun.38, 1009–1015 (1970)Google Scholar
  4. Losada, M.: Metalloenzymes of the nitrate-reducing system. J. Mol. Catal.1, 245–264 (1975/76)Google Scholar
  5. Lowry, O. M., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951)Google Scholar
  6. Miflin, B. J., Lea, P. J.: The path of ammonia assimilation in the plant kingdom. Trends Biochem. Sci.1, 103–106 (1976)Google Scholar
  7. Rhodes, D., Rendon, G. A., Stewart, G. R.: The regulation of ammonia assimilating enzymes inLemna minor. Planta129, 203–210 (1976)Google Scholar
  8. Rigano, C.: Studies on nitrate reductase fromCyanidium caldarium. Arch. Mikrobiol.76, 265–276 (1971)Google Scholar
  9. Rigano, C., Violante, U.: Effect of nitrate, ammonia and nitrogen starvation on the regulation of nitrate reductase inCyanidium caldarium. Arch. Mikrobiol.90, 27–33 (1973)Google Scholar
  10. Rigano, C., Aliotta, G., Violante, U.: Reversible inactivation by ammonia of assimilatory nitrate reductase inCyanidium caldarium. Arch. Microbiol.99, 81–90 (1974a)Google Scholar
  11. Rigano, C., Aliotta, G., Violante, U.: Presence of high levels of nitrate reductase activity inCyanidium caldarium grown on glutamate as the sole nitrogen source. Plant Sci. Lett.2, 277–281 (1974b)Google Scholar
  12. Rigano, C., Aliotta, G., Di Martino Rigano, V.: Observation on enzymes of ammonia assimilation in two different strains ofCyanidium caldarium. Arch. Microbiol.104, 297–299 (1975)Google Scholar
  13. Rigano, C., Di Martino Rigano, V., Vona, V., Aliotta, G., Fuggi, A.: Inibizione della crescita diCyanidium caldarium da methionina solfossimmina e metionina solfone. Due inibitori della glutammina sintetasi. Rend. Accad. Naz. Lincei63, 141–148 (1977)Google Scholar
  14. Rigano, C., Di Martino Rigano, V., Vona, V., Fuggi, A., Aliotta, G.: Studies in vivo on the control by ammonia of nitrate reduction to nitrite in the unicellular algaCyanidium caldarium. Plant Sci. Lett.13, 301–307 (1978)Google Scholar
  15. Stevens, S. E., Jr., Van Baalen, C.: Control of nitrate reductase in a blue-green alga. The effects of inhibitors, blue light and ammonia. Arch. Biochem. Biophys.161, 146–152 (1974)Google Scholar
  16. Stewart, W. D. P., Rowell, P.: Effects ofl-methionine-dl-sulphoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production inAnabaena cylindrica. Biochem. Biophys. Res. Commun.65, 846–856 (1975)Google Scholar
  17. Stewart, G. R., Rhodes, D.: Evidence for the assimilation of ammonia via the glutamine pathway in nitrate-grownLemna minor L. FEBS Lett.64, 296–299 (1976)Google Scholar
  18. Syrett, P. J., Morris, I.: The inhibition of nitrate assimilation by ammonium inChlorella. Biochim. Biophys. Acta67, 566–575 (1963)Google Scholar
  19. Thacker, A., Syrett, P. J.: The assimilation of nitrate and ammonium byChlamydomonas reinhardi. New Phytol.71, 423–433 (1972)Google Scholar
  20. Wolk, C. P., Thomas, J., Shaffer, P. W.: Pathway of nitrogen metabolism after fixation of13N-labeled nitrogen gas by the cyanobacteriumAnabaena cylindrica. J. Biol. Chem.251, 5027–5034 (1976)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Carmelo Rigano
    • 1
  • Vittoria Di Martino Rigano
    • 1
  • Vincenza Vona
    • 1
  • Amodio Fuggi
    • 1
  1. 1.Istituto di Botanica dell'Università di NapoliNapoliItalia

Personalised recommendations