Surveys in Geophysics

, Volume 15, Issue 2, pp 209–238 | Cite as

Electromagnetic studies of global geodynamic processes

  • Pascal Tarits


The deep electromagnetic sounding (DES) technique is one of the few geophysical methods, along with seismology, gravity, heat flow, which may be use to probe the structure of the Earth's mantle directly. The interpretation of the DESs may provide electrical conductivity profiles down to the upper part of the lower mantle. The electrical conductivity is extremely sensitive to most of the thermodynamic processes we believe are acting in the Earth's mantle (temperature increases, partial melting, phase transition and to a lesser extent pressure). Therefore, in principle, results from DES along with laboratory measurements could be used to constrain models of these processes.

The DES technique is reviewed in the light of recent results obtained in a variety of domains: data acquisition and analysis, global induction modeling and data inversion and interpretation.

The mechanisms and the importance of surface distortions of the DES data are reviewed and techniques to model them are discussed. The recent results in terms of the conductivity distribution in the mantle from local and global DES are presented and a tentative synthesis is proposed.

The geodynamic interpretations of the deep conductivity structures are reviewed. The existence of mantle lateral heterogeneities in conductivity at all scales and depths for which electromagnetic data are available is now well documented. A comparison with global results from seismology is presented.


Lower Mantle Induction Modeling Conductivity Structure Geodynamic Process Conductivity Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banks, R.: 1969, ‘Geomagnetic Variations and the Electrical Conductivity of the Upper Mantle’,Geophys. J. R. Astr. Soc. 17, 457–487.Google Scholar
  2. Beamish, D., Hewson-Browne, R. C., Kendall, P. C., Malin, S. R. C. and Quinney, D. A.: 1983, ‘Induction in Arbitrarily Shaped Oceans - VI. Oceans of Variable Depth’,Geophys. J. R. Astr. Soc. 75, 387–398.Google Scholar
  3. Berdichevski, M. N., Fainberg, B., Rotanova, N. M., Smirnov, J. B. and Vanayan, L. L.: 1976, ‘Deep Electromagnetic Investigations’,Ann. Geophys. 32, 143–155.Google Scholar
  4. Bullard, E. C. and Parker, R. L.: 1970, Electromagnetic Induction in the Oceans, In E. C. Bullard and J. L. Worwel (eds),The Sea, Vol IV, Wiley, New York, pp. 695–730.Google Scholar
  5. Campbell, W. H.: 1987, ‘The Upper Mantle Conductivity Analysis Method Using Observatory Records of the Geomagnetic Field’,PAGEOPH 125, 427–457.Google Scholar
  6. Campbell, W. H. and Schiffmacher, E. R.: 1985, ‘Quiet Ionospheric Currents of the Southern Hemisphere Derived from Geomagnetic Records’,J. Geophys. Res. 90, 6475–6484.Google Scholar
  7. Campbell, W. H. and Schiffmacher, E. R.: 1988, ‘Upper Mantle Electrical Conductivity for Seven Subcontinental Regions of the Earth’,J. Geomag. Geoelectr. 40, 1387–1406.Google Scholar
  8. Cermak, V. and Lastovickova, M.: 1987, ‘Temperature Profiles in the Earth of Importance to Deep Electrical Conductivity Models’,PAGEOPH 125, 255–284.Google Scholar
  9. Chapman, S.: 1919, ‘The Solar and Lunar Diurnal Variation of the Earth's Magnetism’,Phil. Trans. R. Soc. Lond. (A),218, 1–118.Google Scholar
  10. Chapman, S. and Price, A.: 1930, ‘The Electric and Magnetic State of the Interior of the Earth as Inferred from Terrestrial Magnetic Variations’,Phil. Trans. R. Soc. Lond. (A),229, 427–460.Google Scholar
  11. Chen, P. F. and Fung, P. C. W.: 1991, ‘Electromagnetic Response Function for the Period of 27 Day in the Chinese Region’,J. Geomag. Geoelectr. 43, 979–987.Google Scholar
  12. Counil, J. L., Menvielle, M. and Le Mouel, J. L.: 1987, ‘Upper Mantle Lateral Heterogeneities and Magnetotelluric Daily Variation Data’,PAGEOPH 125, 1–22.Google Scholar
  13. Dmitriev, V. I., Rotanova, N. M., Zakharova, O. K. and Fiskina, M. V.: 1987, ‘Models of Deep Electrical Conductivity Obtained from Data on Global Magnetic Variational Sounding’,PAGEOPH 125(2/3), 409–426.Google Scholar
  14. Duhau, S. and Favetto, A.: 1990, ‘The Conductosphere Depth at Equatorial Latitudes as Determined from Geomagnetic Daily Variations’,PAGEOPH 134, 559–574.Google Scholar
  15. Fainberg, E. B.: 1980, ‘Electromagnetic Induction in the World Ocean’,Geophys. Surv. 4, 157–172.Google Scholar
  16. Fainberg, E. B. and Singer, B. Sh.: 1980, ‘Electromagnetic Induction in a Non-Uniform Spherical Model of the Earth’,Ann. Geophys. 36, 127–134.Google Scholar
  17. Fainberg, E. B., Kuvshinov, A. V. and Singer, B. Sh.: 1991a, ‘Electromagnetic Induction in a Spherical Earth with Non-Uniform Oceans and Continents in Electric Contact with the Underlying Medium -I. Theory, method and example,Geophys. J. Int. 102, 273–281.Google Scholar
  18. Fainberg, E. B., Kuvshinov, A. V. and Singer, B. Sh.: 1991b, ‘Electromagnetic Induction in a Spherical Earth with Non-Uniform Oceans and Continents in Electric Contact with the Underlying Medium -II. Bimodal Global Geomagnetic Sounding of the Lithosphere’,Geophys. J. Int. 102, 283–286.Google Scholar
  19. Hagger, B. H. and R. W. Clayton: 1989, ‘Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models and the Geoid, In W. R. Peltier,Mantle Convection, Gordon and Breach Science Publishers, pp. 6577#x2013;764.Google Scholar
  20. Hibberd, F. H. and Davidson, R. E.: 1988, ‘Global Scale of the Day-to-Day Variability of Sq’,Geophys. J. 92, 315–321.Google Scholar
  21. Hobbs, B. A.: 1987, Conductivity profiles from global data,PAGEOPH 125, 393–407.Google Scholar
  22. Hobbs, B. A. and Dawes, G. J. K.: 1979, ‘Calculation of the Effect of the Oceans on the Geomagnetic Variations with an Application to the Sq Field During the IGY’,J. Geophys. 46, 273–289.Google Scholar
  23. Honkura, Y.: 1978, ‘Electrical Conductivity Anomalies in the Earth’,Geophys. Surv. 3, 225–254.Google Scholar
  24. Kharin, E. P. and Semenov, V. YU.: 1986, ‘The Curve of Deep Magnetovariation Sounding in the Pacific Ocean Obtained by Continuum Spectrum Method’,Annales Geophysicae 4B, 329–334.Google Scholar
  25. Kuvshinov, A. V., Pankratov, O. V. and Singer, B. Sh.: 1990, ‘The Effect of the Oceans and Sedimentary Cover on Global Magnetovariational Field Distribution’,PAGEOPH 134, 533–540.Google Scholar
  26. Lognonné, P. and Romanowicz, B.: 1990, ‘Modelling of Coupled Normal Modes of the Earth: The Spectral Method’,Geophys. J. Int. 102, 365–395.Google Scholar
  27. Mackie, R. L., Bennett, B. T. and Madden, T. R.: 1988, ‘Long-Period Magnetotelluric Measurements Near the Central California coast: A Land-Locked View of the Conductivity Structure Under the Pacific Ocean’,Geophys. J. 95, 181–194.Google Scholar
  28. Malin, S. R. C. and Gupta, J. C.: 1977, ‘The Sq Current System During the International Geophysical Year’,Geophys. J. R. Astr. Soc. 49, 515–529.Google Scholar
  29. Menvielle, M., Rossignol, J. C. and Tarits, P.: 1982, ‘The Coast Effect in Terms of Deviated Electric Currents: A Numerical Study’,Phys. Earth Planet. Int. 28, 118–128.Google Scholar
  30. Omura, K.: 1991, ‘Change of Electrical Conductivity of Olivine Associated with the Olivine-Spinel Transition’,Phys. Earth Planet. Int. 65, 292–307.Google Scholar
  31. Parkinson, W. D. and Hutton, V. R. S.: 1989, ‘The Electrical Conductivity of the Earth’, in J. A. Jacobs (ed.),Geomagnetism, vol. 3, Academic Press, pp. 261–322.Google Scholar
  32. Petersons, H. F. and Anderssen, R. S.: 1990, ‘On the Spherical Symmetry of the Electrical Conductivity of the Earth's Mantle’,J. Geomag. Geoelectr. 42, 1309–1324.Google Scholar
  33. Phinney, R. A. and Burridge, R.: 1959, ‘Representation of the Elastic-Gravitational Excitation of a Spherical Earth Model by Generalized Spherical Harmonics’,Geophys. J. R. Astr. Soc. 34, 451–487.Google Scholar
  34. Rikitake, T.: 1961, ‘Sq and Ocean’,J. Geophys. Res. 66, 3245–3254.Google Scholar
  35. Rikitake, T.: 1966, ‘Electromagnetism and the Earth's Interior’, Elsevier, Amsterdam.Google Scholar
  36. Ritz, M. and Robineau B.: 1986, ‘Crustal and Upper Mantle Electrical Conductivity Structures in West Africa: Geodynamic Implications’,Tectonophysics 124, 115–132.Google Scholar
  37. Roberts, R. G.: 1983, ‘Electromagnetic Evidence for Lateral Inhomogeneities Within the Earth's Upper Mantle’,Phys. Earth Planet. Int. 33, 198–212.Google Scholar
  38. Roberts, R. G.: 1984, ‘The Long-Period Electromagnetic Response of the Earth’,Geophys. J. R. Astr. Soc. 78, 547–572.Google Scholar
  39. Roberts, R. G.: 1986a, ‘The Deep Electrical Structure of the Earth’,Geophys. J. R. Astr. Soc. 85, 583–600.Google Scholar
  40. Roberts, R. G.: 1986b, ‘Global Electromagnetic Induction’,Surv. Geophys. 8, 339–374.Google Scholar
  41. Schmucker, U.: 1987, ‘Substitute Conductors for Electromagnetic Response Estimates’,PAGEOPH 125, 341–367.Google Scholar
  42. Schultz, A.: 1990, ‘On the Vertical Gradient and Associated Heterogeneity in Mantle Electrical Conductivity’,Phys. Earth Planet. Int. 64, 68–86.Google Scholar
  43. Schultz, A. and Larsen, J. C.: 1987, ‘On the Electrical Conductivity of the Mid-Mantle: I. Calculation of Equivalent Scalar Magnetotelluric Response Functions’,Geophys. J. R. Astr. Soc. 88, 733–761.Google Scholar
  44. Schultz, A. and Larsen, J.: 1990, ‘On the Electrical Conductivity of the Mid-Mantle: II. Delineation of Heterogeneity by Application of Extremal Inverse Solutions’,Geophys. J. Int. 101, 565–580.Google Scholar
  45. Schultz, A., Booker, J. and Larsen, J.: 1987, ‘Lake Bottom Magnetotellurics’,J. Geophys. Res. 92, 10,639–10,649.Google Scholar
  46. Schuster, A.: 1889, ‘The Diurnal Variation of Terrestrial Magnetism’,Phil. Trans. R. Soc. Lond. (A),180, 467–518.Google Scholar
  47. Semenov, V. YU.: 1989, ‘Evaluation of Mantle Conductivity Beneath Northern Hemisphere's Continents’,Izvestiya Earth Physics 25, 221–226.Google Scholar
  48. Shearer, P. M. and Masters, T. G.: 1992, ‘Global Mapping of Topography on the 660-km Discontinuity,Nature 355, 791–796.Google Scholar
  49. Takeda, M.: 1985, ‘UT Variation of Internal Sq Current and the Oceanic Effect During 1980 March 1–18’,J. Geophys. J. R. Astr. Soc. 80, 649–659.Google Scholar
  50. Takeda, M.: 1989, ‘Mantle Conductivity from the Geomagnetic Sq Field’,J. Geomag. Geoelec. 41, 643–646.Google Scholar
  51. Takeda, M.: 1991, ‘Electric Currents in the Ocean Induced by the Geomagnetic Sq Field and Their Effect on the Estimation of Mantle Conductivity’,Geophys. J. Int. 104, 381–385.Google Scholar
  52. Tanimoto, T.: 1990, ‘Long-Wavelength S-Wave Velocity Structure Throughout the Mantle’,Geophys. J. Int. 100, 327–336.Google Scholar
  53. Tarits, P. and Wahr, J.: 1992, ‘Electrical Conductivity Heterogeneities in the Mantle: Correlation with Mantle Velocity Structure’,AGU, San Francisco,abstract. Google Scholar
  54. Wahr, J., Tarits, P. and Lognonń, P.: 1992, ‘Lateral Variations in D″ Electrical Conductivity: Possible Effects on the Secular Variation of the Nagnetic Field’,AGU, San Francisco,abstract. Google Scholar
  55. Winch, D. E.: 1989, ‘Induction in a Model Ocean’,Phys. Earth Planet. Int. 53, 328–336.Google Scholar
  56. Zhang, T. S. and Schultz, A.: 1992, ‘A Three-Dimensional Perturbation Solution for the EM Induction Problem in a Spherical Earth - The Forward Problem’,Geophys. J. Int. 111, 319–334.Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Pascal Tarits
    • 1
  1. 1.Laboratoire de Géoscience MarinesUniversité de Bretagne OccidentaleBrest cedexFrance

Personalised recommendations