Cancer and Metastasis Reviews

, Volume 13, Issue 2, pp 191–207 | Cite as

Reverse transformation of multidrug-resistant cells

  • June L. Biedler
  • Barbara A. Spengler


Spontaneously transformed Chinese hamster lung cells with high levels of resistance (≈ 100-fold to 70,000-fold) to actinomycin D, daunorubicin, or vincristine exhibit morphology and growth patterns characteristic of normal cellsin vitro and reduced tumorigenicityin vivo. These reverse transformed, multidrug-resistant cells amplify and highly overexpress one or more genes encoding P-glycoprotein. Similarly, hydrocarbon-induced mouse sarcoma cells selected with actinomycin D, vincristine, or ethidium bromide developed high levels of resistance associated with reduced drug accumulation and suppression of malignancy. To determine whether human tumor cells would undergo similar changes and whether reverse transformation reflected an altered state of differentiation, nine multidrug-resistant sublines were selected with four agents from human neuroblastoma cells with well defined pathways of differentiation. Those five with resistance levels above about 125-fold showed a reduced tumor frequency as compared to control cells. All resistant sublines showed altered differentiation. The changes in transformation phenotype appear to be intrinsic and not the result of altered immunogenicity. Two additional consequences of high level multidrug resistance have been observed: change in ganglioside composition in the Chinese hamster cells, manifested as a block in higher ganglioside biosynthesis and/or a relative increase in GM3, and increase in epidermal growth factor receptor in all three cell systems. A tentative hypothesis links ganglioside and growth factor receptor changes to the change in transformation phenotype. The basis of the reverse transformation phenomenon is not known, but the major alterations in expression of P-glycoprotein, gangliosides, and the epidermal growth factor receptor implicate, in some way, the plasma membrane.

Key words

multidrug resistance reverse transformation tumorigenicity gangliosides EGF receptor differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Endicott JA, Ling V: The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem 58: 137–171, 1989Google Scholar
  2. 2.
    Schinkel AH, Borst P: Multidrug resistance mediated by P-glycoproteins. Semin Cancer Biol 2: 213–226, 1991Google Scholar
  3. 3.
    Roninson IB: Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells. Plenum Press, New York, 1991, pp 3–402Google Scholar
  4. 4.
    Cordon-Cardo C, O'Brien JP: The multidrug resistance phenotype in human cancer. In: DeVita V, Hellman S, Rosenberg S (eds) Important advances in oncology. JB Lippincott, Philadelphia, 1991, pp 19–38Google Scholar
  5. 5.
    Biedler JL: Genetic aspects of multidrug resistance. Cancer 70: 1799–1809, 1992Google Scholar
  6. 6.
    Gottesman MM, Pastan I: Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62: 385–427, 1993Google Scholar
  7. 7.
    Albrecht AM, Biedler JL: Acquired resistance of tumor cells to folate antagonists. In: Sirotnak FM, Burchall JJ, Ensminger WB, Montgomery JA (eds) Folate antagonists as therapeutic agents. Academic Press, New York, 1984, pp 317–353Google Scholar
  8. 8.
    Biedler JL, Meyers MB: Multidrug resistance (Vinca alkaloids, actinomycin D, and anthracycline antibiotics). In: Gupta RS (ed) Drug resistance in mammalian cells, Vol II: Anticancer and other drugs. CRC Press, Inc, Boca Raton, 1989, pp 57–88Google Scholar
  9. 9.
    Biedler JL: Drug resistance: Genotype versus phenotype-Thirty-second GHA Clowes Memorial Award Lecture. Cancer Res 54: 666–678, 1994Google Scholar
  10. 10.
    Hakala MT, Zakrzewski SF, Nichol CA: Relation of folic acid reductase to amethopterin resistance in cultured mammalian cells. J Biol Chem 236: 952–958, 1961Google Scholar
  11. 11.
    Biedler JL, Albrecht AM, Hutchison DJ, Spengler BA: Drug response, dihydrofolate reductase, and cytogenetics of amethopterin-resistant Chinese hamster cellsin vitro. Cancer Res 32: 153–161, 1972Google Scholar
  12. 12.
    Biedler JL, Spengler BA: Metaphase chromosome anomaly: Association with drug resistance and cell-specific products. Science 191: 185–187, 1976Google Scholar
  13. 13.
    Biedler JL, Albrecht AM, Spengler BA: Biochemical and karyological properties of cells resistant to the quinazoline antifolate, methasquin. Eur J Cancer 14: 41–49, 1978Google Scholar
  14. 14.
    Schimke RT, Alt FW, Kellems RT, Kaufman RJ, Bertino JR: Amplification of dihydrofolate reductase genes in methotrexate-resistant cultured mouse cells. Cold Spring Harbor Symp Quant Biol 42: 649–657, 1978Google Scholar
  15. 15.
    Biedler JL, Riehm H: Cellular resistance to actinomycin D in Chinese hamster cellsin vitro: Cross-resistance, radioautographic, and cytogenetic studies. Cancer Res 30: 1174–1184, 1970Google Scholar
  16. 16.
    Riehm H, Biedler JL: Cellular resistance to daunomycin in Chinese hamster cellsin vitro. Cancer Res 31: 409–412, 1971Google Scholar
  17. 17.
    Peterson RHF, O'Neil JA, Biedler JL: Some biochemical properties of Chinese hamster cells sensitive and resistant to actinomycin D. J Cell Biol 63: 773–779, 1974Google Scholar
  18. 18.
    Biedler JL, Peterson RHF: Altered plasma membrane glycoconjugates of Chinese hamster cells with acquired resistance to actinomycin D, daunorubicin, and vincristine. In: Sartorelli AC, Lazo JS, Bertino JR (eds) Molecular actions and targets for cancer chemotherapeutic agents. Bristol-Myers Cancer Symposia. Academic Press, New York, 1981, pp 453–482Google Scholar
  19. 19.
    Goldstein MN, Hamm K, Amrod E: Incorporation of tritiated actinomycin D into drug-sensitive and drug-resistant HeLa cells. Science 151: 1555–1556, 1966Google Scholar
  20. 20.
    Kessel D, Botterill V, Wodinsky I: Uptake and retention of daunomycin by mouse leukemic cells as factors in drug response. Cancer Res 28: 938–941, 1968Google Scholar
  21. 21.
    Ling V, Thompson LH: Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol 83: 103–116, 1974Google Scholar
  22. 22.
    Juliano RL, Ling V: A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 455: 152–162, 1976Google Scholar
  23. 23.
    Riordan JR, Ling V: Purification of P-glycoprotein from plasma membrane vesicles of Chinese hamster ovary cell mutants with reduced colchicine permeability. J Biol Chem 254: 12701–12705, 1979Google Scholar
  24. 24.
    Peterson RHF, Biedler JL: Plasma membrane proteins and glycoproteins from Chinese hamster cells sensitive and resistant to actinomycin D. J Supramol Struct 9: 289–298, 1972Google Scholar
  25. 25.
    Beck WT, Muller TJ, Tanzer LR: Altered surface membrane glycoproteins in Vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Res 30: 2070–2076, 1979Google Scholar
  26. 26.
    Biedler JL, Meyers MB, Peterson RHF, Spengler BA: Marker chromosome with a homogeneously staining region (HSR) in vincristine-resistant cells (Abstract). Proc Am Assoc Cancer Res 21: 292, 1980Google Scholar
  27. 27.
    Roninson IB, Albelson HT, Housman DE: Amplification of specific DNA sequences correlates with multidrug resistance in Chinese hamster cells. Nature 309: 626–628, 1984Google Scholar
  28. 28.
    Riordan JR, Deuchars K, Kartner N, Alon N, Trent J, Ling V: Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature 316: 817–819, 1985Google Scholar
  29. 29.
    Biedler JL, Riehm H, Peterson RHF, Spengler BA: Membrane-mediated drug resistance and phenotypic reversion to normal growth behavior of Chinese hamster cells. J Natl Cancer Inst 55: 671–680, 1975Google Scholar
  30. 30.
    Scotto KW, Biedler JL, Melera PW: Amplification and expression of genes associated with multidrug resistance in mammalian cells. Science 232: 751–755, 1986Google Scholar
  31. 31.
    de Bruijn MHL, Van der Bliek AM, Biedler JL, Borst P: Differential amplification and disproportionate expression of five genes in three multidrug-resistant Chinese hamster lung cell lines. Mol Cell Biol 6: 4717–4722, 1986Google Scholar
  32. 32.
    Meyers MB, Spengler BA, Chang T-d, Melera PW, Biedler JL: Gene amplification-associated cytogenetic aberrations and protein changes in vincristine-resistant Chinese hamster, mouse, and human cells. J Cell Biol 100: 588–597, 1985Google Scholar
  33. 33.
    Peterson RHF, Meyers MB, Spengler BA, Biedler JL: Alteration of plasma membrane glycopeptides and gangliosides of Chinese hamster cells accompanying development of resistance to daunorubicin and vincristine. Cancer Res 43: 222–228, 1983Google Scholar
  34. 34.
    Biedler JL, Chang T-d, Meyers MB, Peterson RHF, Spengler BA: Drug resistance in Chinese hamster lung and mouse tumor cells. Cancer Treat Rep 67: 859–867, 1983Google Scholar
  35. 35.
    Belehradek Jr J, Biedler JL, Thonier M, Barski G: Actinomycin D-resistantin vitro mouse cell line derived from a methylcholanthrene-induced sarcoma: Decrease of malignancy and antigenic characteristics. Int J Cancer 14: 779–788, 1974Google Scholar
  36. 36.
    Ross RA, Spengler BA, Biedler JL: Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 71: 741–747, 1983Google Scholar
  37. 37.
    Rettig WJ, Spengler BA, Garin Chesa P, Old LJ, Biedler JL: Coordinate changes in neuronal phenotype and surface antigen expression in human neuroblastoma cell variants. Cancer Res 47: 1383–1389, 1987Google Scholar
  38. 38.
    Biedler JL, Spengler BA, Chang T-d, Ross RA: Transdifferentiation of human neuroblastoma cells results in coordinate loss of neuronal and malignant properties. In: Evans AE, D'Angio GJ, Knudson AG, Seeger RC (eds) Advances in neuroblastoma research 2. Alan R Liss, Inc, New York, 1988, pp 265–276Google Scholar
  39. 39.
    Ciccarone V, Spengler BA, Meyers MB, Biedler JL, Ross RA. Phenotypic diversification in human neuroblastoma cells: Expression of distinct neural crest lineages. Cancer Res 49: 219–225, 1989Google Scholar
  40. 40.
    Ross RA, Joh TH, Reis DJ, Spengler BA, Biedler JL: Neurotransmitter-synthesizing enzymes in human neuroblastoma cells: Relationship to morphological diversity. In: Evans AE (ed) Advances in neuroblastoma research. Raven Press, New York, 1980, pp 151–160Google Scholar
  41. 41.
    Ross RA, Biedler JL: Presence and regulation of tyrosinase activity in human neuroblastoma cell variantsin vitro. Cancer Res 45: 1628–1632, 1985Google Scholar
  42. 42.
    DeClerck YA, Lee C: Collagen biosynthesis in human neuroblastoma cell lines: Evidence for expression of glial cell properties. J Natl Cancer Inst 75: 431–439, 1985Google Scholar
  43. 43.
    Sugimoto T, Ueyama H, Hosoi H, Inazawa J, Kato T, Kemshead JT, Reynolds CP, Gown AM, Mine H, Sawada T: Alpha-smooth-muscle actin and desmin expression in human neuroblastoma cell lines. Int J Cancer 48: 277–283, 1991Google Scholar
  44. 44.
    Ross RA, Bossart E, Spengler BA, Biedler JL: Multipotent capacity of morphologically intermediate (I-type) human neuroblastoma cells after treatment with differentiation-inducing drugs. In: Evans AE, D'Angio GJ, Knudson Jr AG, Seeger RC (eds) Advances in neuroblastoma research 3. Wiley-Liss, New York, 1991, pp 193–201Google Scholar
  45. 45.
    Ross RA, Spengler BA, Rettig WJ, Biedler JL: Differentiation-inducing agents stably convert human neuroblastoma I-type cells to neuroblastic (N) or nonneuronal (S) neural crest cells. In: Evans AE, Biedler JL, Brodeur GM, D'Angio GJ, Nakagawa A (eds) Advances in neuroblastoma research 4, Wiley-Liss, New York, in pressGoogle Scholar
  46. 46.
    Biedler JL, Helson L, Spengler BA: Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res 33: 2643–2652, 1973Google Scholar
  47. 47.
    Melera PW, Biedler JL: Molecular and cytogenetic analysis of multidrug resistance-associated gene amplification in Chinese hamster, mouse sarcoma, and human neuroblastoma cells. In: Roninson IB (ed) Molecular and cellular biology of multidrug resistance in tumor cells. Plenum Press, New York, 1991, pp 117–145Google Scholar
  48. 48.
    Van der Bliek AM, Baas F, Van der Velde-Koerts T, Biedler JL, Meyers MB, Ozols RF, Hamilton TC, Joenje H, Borst P: Genes amplified and overexpressed in human multidrug-resistant cell lines. Cancer Res 48: 5927–5932, 1988Google Scholar
  49. 49.
    Meyers MB, Biedler JL: Evidence for reverse transformation in multidrug-resistant human neuroblastoma cells. In: Evans AE, D'Angio GJ, Knudson AG, Seeger RC (eds) Advances in neuroblastoma research 2. Alan R Liss, Inc, New York, 1988, pp 449–461Google Scholar
  50. 50.
    Kohl NE, Kanda N, Schreck RR, Bruns G, Latt SA, Gilbert F, Alt FW: Transposition and amplification of oncogene-related sequences in human neuroblastomas. Cell 35: 359–367, 1983Google Scholar
  51. 51.
    Biedler JL, Roffler-Tarlov S, Schachner M, Freedman LS: Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res 38: 3751–3757, 1978Google Scholar
  52. 52.
    Biedler JL, Spengler BA, Ross RA: Cellular maturation and oncogene expression during drug-induced differentiationin vitro: A brief review. In: Ragaz J, Simpson-Herren L, Lippman ME, Fisher B (eds) Effects of therapy on biology and the kinetics of the residual tumor, Part A: Pre-Clinical aspects. Wiley-Liss, New York, 1990, pp 287–312Google Scholar
  53. 53.
    Biedler JL, Casals D, Chang T-d, Meyers MB, Spengler BA, Ross RA: Multidrug-resistant human neuroblastoma cells are more differentiated than controls and retinoic acid further induces lineage-specific differentiation. In: Evans AE, D'Angio GJ, Knudson Jr AG, Seeger RC (eds) Advances in neuroblastoma research 3. Wiley-Liss, New York, 1991, pp 181–191Google Scholar
  54. 54.
    LaQuaglia MP, Kopp EB, Spengler BA, Meyers MB, Biedler JL: Multidrug resistance in human neuroblastoma cells. J Ped Surg 26: 1107–1112, 1991Google Scholar
  55. 55.
    Hakomori S-i, Kannagi R: Glycosphingolipids as tumor-associated and differentiation markers. J Natl Cancer Inst 71: 231–251, 1983Google Scholar
  56. 56.
    Hakomori S-I, Igarashi Y: Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling. Adv Lipid Res 25: 147–162, 1993Google Scholar
  57. 57.
    Fishman PH, Brady RO: Biosynthesis and function of gangliosides. Science 194: 906–915, 1976Google Scholar
  58. 58.
    Peterson RHF, Beutler WJ, Biedler JL: Ganglioside composition of malignant and actinomycin D-resistant nonmalignant Chinese hamster cells. Biochem Pharmacol 28: 579–582, 1979Google Scholar
  59. 59.
    Bremer EG, Schlessinger J, Hakomori S-i: Ganglioside-mediated modulation of cell growth. Specific effects of GM3 on tyrosine phosphorylation of the epidermal growth factor receptor. J Biol Chem 261: 2434–2440, 1986Google Scholar
  60. 60.
    Paulson JC, Colley KJ: Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem 264: 17615–17618, 1989Google Scholar
  61. 61.
    Joziasse DH: Mammalian glycosyltransferases: genomic organization and protein structure. Glycobiology 2: 271–277, 1992Google Scholar
  62. 62.
    Yamashiro S, Ruan S, Furukawa K, Tai T, Lloyd KO, Shiku H, Furukawa K: Genetic and enzymatic basis for the differential expression of GM2 and GD2 gangliosides in human cancer cell lines. Cancer Res 53: 5395–5400, 1993Google Scholar
  63. 63.
    Stoscheck CM, King Jr LE: Role of epidermal growth factor in carcinogenesis. Cancer Res 46: 1030–1037, 1986Google Scholar
  64. 64.
    Meyer MB, Merluzzi VJ, Spengler BA, Biedler JL: Epidermal growth factor receptor is increased in multidrug-resistant Chinese hamster and mouse tumor cells. Proc Natl Acad Sci USA 83: 5521–5525, 1986Google Scholar
  65. 65.
    Biedler JL, Meyers MB, Spengler BA: Cellular concomitants of multidrug resistance. In: Woolley III PV, Tew KD (eds) Mechanisms of drug resistance in neoplastic cells. Bristol-Myers Symposium. Academic Press, New York, 1988, pp 41–68Google Scholar
  66. 66.
    Wakshull E, Kraemer PM, Wharton W: Multistep change in epidermal growth factor receptors during spontaneous neoplastic progression in Chinese hamster embryo fibroblasts. Cancer Res 45: 2070–2075, 1985Google Scholar
  67. 67.
    Meyers MB, Biedler JL: Protein changes in multidrug-resistant cells. In: Roninson IB (ed) Molecular and cellular biology of multidrug resistance in tumor cells. Plenum Press, New York, 1991, pp 243–261Google Scholar
  68. 68.
    Meyers MB, Shen WPV, Spengler BA, Ciccarone V, O'Brien JP, Donner DB, Furth ME, Biedler JL: Increased epidermal growth factor receptor in multidrug-resistant human neuroblastoma cells. J Cell Biochem 38: 87–97, 1988Google Scholar
  69. 69.
    Wicker R, Bourali M-F, Suarez HG, Cassingena R: Propriété d'une lignée de cellules de hamster transformées par le virus SV40 et résistantes a l'actinomycine D. Int J Cancer 10: 632–640, 1972Google Scholar
  70. 70.
    Nigam VN, Lallier R, Brailovsky C: Ganglioside patterns and phenotypic characteristics in a normal variant and a transformed back variant of a Simian virus 40-induced hamster tumor cell line. J Cell Biol 58: 307–316, 1973Google Scholar
  71. 71.
    Bénard J, Da Silva J, Teyssier J-R, Riou G: Over-expression of MDR1 gene with no DNA amplification in a multipledrug-resistant human ovarian carcinoma cell line. Int J Cancer 43: 471–477, 1989Google Scholar
  72. 72.
    Beck WT, Cirtain MC, Ashmun RA, Mirro J: Differentiation and the multiple drug resistance phenotype in human leukemic cells. Cancer Res 46: 4571–4575, 1986Google Scholar
  73. 73.
    Hill AB, Beck WT, Trent JM: Cytogenetic and molecular characterization of tumors in nude mice derived from a multidrug-resistant human leukemia cell line. Cancer Res 48: 393–398, 1988Google Scholar
  74. 74.
    Biedler JL, Chang T-d, Peterson RHF, Melera PW, Meyers MB, Spengler BA: Gene amplification and phenotypic instability in drug-resistant and revertant cells. In: Chabner BA (ed) Rational basis for chemotherapy. UCLA symposia on molecular and cellular biology; new series. Alan R Liss, Inc, New York, 1983, pp 71–92Google Scholar
  75. 75.
    Borst P, Van der Bliek AM: Amplification of several different genes in multidrug-resistant Chinese hamster cell lines. In: Roninson IB (ed) Molecular and cellular biology of multidrug resistance in tumor cells. Plenum Press, New York, 1991, pp 107–116Google Scholar
  76. 76.
    Kerbel RS, MacDougall JR: Possible contribution of growth factors to the evolution of metastasis andde novo multidrug resistance in cancer. In: Teicher BA (ed) Drug resistance in oncology. Marcel Dekker, Inc, New York, 1993, pp 583–601Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • June L. Biedler
    • 1
  • Barbara A. Spengler
    • 1
  1. 1.Memorial Sloan-Kettering Cancer CenterNew YorkUSA

Personalised recommendations