Archives of Microbiology

, Volume 117, Issue 1, pp 53–60 | Cite as

Regulatory properties of the nitrogenase fromRhodopseudomonas palustris

  • W. G. Zumft
  • F. Castillo


Ammonium salts, glutamine, asparagine, and urea cause an immediate inactivation (switch-off) of light-dependent acetylene reduction in intact cells of the photosynthetic bacteriumRhodopseudomonas palustris. This effect is reversible showing the same kinetic pattern of inactivation and reactivation with all effector compounds. Its duration depends on the amount of effector added to the cells. Both nitrogenase components are found catalytically active in a cell-free preparation after enzyme switch-off in vivo. Involvement of the ammonia assimilating system in this regulatory mechanism is indicated by the following observations: ammonia uptake during the switch-off period, resumption of acetylene reduction after disappearance of ammonia from the outer medium, and persistence of enzyme switch-off with dihydrogen and thiosulfate as electron donors in the absence of an additional carbon source. Nitrogenase activity in crude extracts is non-linear with time and is stimulated by manganese ions. After resolution of nitrogenase into its MoFe-protein and Fe-protein these properties are lost, indicating the presence of an activating factor. Nitrogenase ofR. palustris cross reacts reciprocally with the complementary proteins ofAzotobacter vinelandii, but not with those ofClostridium pasteurianum.

Key words

Rhodopseudomonas palustris Nitrogenase Regulation Ammonia Cross reactivity 



m-chlorocarbonyl cyanide phenyl hydrazone




electron paramagnetic resonance


N-2-hydroxyethylpiperazine-Ń-2-ethane sulfonic acid




N-tris[hydroxymethyl]methyl-2-aminoethane sulfonic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Burns, R. C., Bulen, W. A.: A procedure for the preparation of extracts fromRhodospirillum rubrum catalyzing N2 reduction and ATP-dependent H2 evolution. Arch. Biochem. Biophys.113, 461–462 (1966)Google Scholar
  2. Cohen-Bazire, G., Sistrom, W. R., Stanier, R. Y.: Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. Cell. Comp. Physiol.49, 25–67 (1957)Google Scholar
  3. Davis, L. C., Shah, V. K., Brill, W. J., Orme-Johnson, W. H.: Nitrogenase. II. Changes in the EPR signal of component I (ironmolybdenum protein) ofAzotobacter vinelandii nitrogenase during repression and derepression. Biochim. Biophys. Acta256, 512–523 (1972)Google Scholar
  4. Detroy, R. W., Witz, D. F., Parejko, R. A., Wilson, P. W.: Reduction of N2 by complementary functioning of two components from nitrogen fixing bacteria. Proc. Natl. Acad. Sci. U.S.A.61, 537–541 (1968)Google Scholar
  5. Gest, H., Kamen, M. D., Bregoff, H. M.: Studies on the metabolism of phosphosynthetic bacteria. V. Photoproduction of hydrogen and nitrogen fixation byRhodospirillum ribrum. J. Biol. Chem.182, 153–170 (1950)Google Scholar
  6. Gogotov, I. N., Mitkiss, T. V., Glinskii, V. P.: Effect of ammonium on hydrogen liberation and nitrogen fixation byRhodopseudomonas palustris. Mikrobiologiya (Engl. transl.)43, 495–499 (1974)Google Scholar
  7. Gürgün, V., Kirchner, G., Pfennig, N.: Vergärung von Pyruvat durch sieben Arten phototropher Purpurbakterien. Z. Allg. Mikrobiol.16, 573–586 (1976)Google Scholar
  8. Hillmer, P., Gest, H.: H2 Metabolism in the photosynthetic bacteriumRhodopseudomonas capsulata: Production and utilization of H2 by resting cells. J. Bacteriol.129, 732–739 (1977)Google Scholar
  9. Hochman, A., Carmeli, C.: ATPase and ATP-Pi exchange activities inChromatium strain D chromatophores. Photosynthetica7, 238–245 (1973)Google Scholar
  10. Johansson, B. C., Gest, H.: Inorganic nitrogen assimilation by the photosynthetic bacteriumRhodopseudomonas capsulata. J. Bacteriol.128, 683–688 (1976)Google Scholar
  11. Keister, D. L., Fleischman, D. E.: Nitrogen fixation in photosynthetic bacteria. In: Photophysiology, Vol. 8 (A. Giese, ed.), pp. 157–183. New York-London: Academic Press 1973Google Scholar
  12. Kennedy, I. R., Morris, J. A., Mortenson, L. E.: N2 fixation by purified components of the N2 fixing system ofClostridium pasteurianum. Biochim. Biophys. Acta153, 777–786 (1968)Google Scholar
  13. Kleiner, D.: Ammonium uptake by nitrogen fixing bacteria. I.Azotobacter vinelandii. Arch. Microbiol.104, 163–169 (1975)Google Scholar
  14. Leiser, M., Gromet-Elhanan, Z.: Comparison of the electrochemical proton gradient and phosphate potential maintained byRhodospirillum rubrum chromatophores in the steady state. Arch. Biochem. Biophys.178, 79–88 (1977)Google Scholar
  15. Lindström, E. S., Lewis, S. M., Pinsky, M. J.: Nitrogen fixation and hydrogenase in various bacterial species. J. Bacteriol.61, 481–487 (1951)Google Scholar
  16. Losada, M., Nozaki, M., Arnon, D. I.: Photoproduction of molecular hydrogen from thiosulfate by Chromatium cells. In: A symposium on light and life (W. D. McElroy, B. Glass, eds.), pp. 570–575. Baltimore: Johns Hopkins Press 1961Google Scholar
  17. Ludden, P. W., Burris, R. H.: Activating factor for the iron protein of nitrogenase fromRhodospirillum rubrum. Science194, 424–426 (1976)Google Scholar
  18. Moustafa, E., Mortenson, L. E.: Acetylene reduction by nitrogen fixing extracts ofClostridium pasteurianum: ATP requirement and inhibition by ADP. Nature216, 1241–1242 (1967)Google Scholar
  19. Neilson, A. H., Nordlund, S.: Regulation of nitrogenase synthesis in intact cells ofRhodospirillum rubrum: Inactivation of nitrogen fixation by ammonia,l-glutamine andl-asparagine. J. Gen. Microbiol.91, 53–61 (1975)Google Scholar
  20. Pratt, D. C., Frenkel, A. W.: Studies on nitrogen fixation and photosynthesis ofRhodospirillum rubrum. Plant Physiol.34, 333–337 (1959)Google Scholar
  21. Schick, H.-J.: Substrate and light dependent fixation of molecular nitrogen inRhodospirillum rubrum. Arch. Mikrobiol.75, 89–101 (1971)Google Scholar
  22. Seto, B., Mortenson, L. E.: Mechanism of carbamyl phosphate inhibition of nitrogenase ofClostridium pasteurianum. J. Bacteriol.117, 805–812 (1974)Google Scholar
  23. Shah, V. K., Brill, W. J.: Nitrogenase. IV. Simple method of purification to homogeneity of nitrogenase components fromAzotobacter vinelandii. Biochim. Biophys. Acta305, 445–454 (1973)Google Scholar
  24. Siefert, E.: Die Fixierung von molekularem Stickstoff bei phototrophen Bakterien am Beispiel vonRhodopseudomonas acidophila. Diss., Univ. Göttingen (1976)Google Scholar
  25. Snell, F. D., Snell, C. T.: Colorimetric methods of analysis, Vol. 2, Toronto-New York-London: Van Nostrand 1949Google Scholar
  26. Stewart, W. D. P.: Nitrogen fixation by photosynthetic microorganisms. Annu. Rev. Microbiol.27, 283–316 (1973)Google Scholar
  27. Streicher, S. L., Shanmugam, K. T., Ausubel, F., Morandi, C., Goldberg, R. B.: Regulation of nitrogen fixation inKlebsiella pneumoniae: Evidence for a role of glutamine synthetase as a regulator of nitrogenase synthesis. J. Bacteriol.120, 815–821 (1974)Google Scholar
  28. Villafranca, J. J., Ash, D. E., Wedler, F. C.: Evidence for methionine sulfoximine as a transition-state analog for glutamine synthetase from NMR and EPR data. Biochem. Biophys. Res. Commun.66, 1003–1010 (1975)Google Scholar
  29. Weare, N. M., Shanmugam, K. T.: Photoproduction of ammonium ion from N2 inRhodospirillum rubrum. Arch. Microbiol.110, 207–213 (1976)Google Scholar
  30. Yates, M. G., Jones, C. W.: Respiration and nitrogen fixation inAzotobacter. Adv. Microbial Physiol.11, 97–135 (1974)Google Scholar
  31. Yoch, D. C., Arnon, D. I.: Biological nitrogen fixation by photosynthetic bacteria. In: The biology of nitrogen fixation (A. Quispel, ed.), pp. 687–695. Amsterdam: North-Holland 1974Google Scholar
  32. Yoch, D. C., Mortensen, R. F., Lindström, E. S.: Thiosulfat photooxidation and nitrogen fixation inRhodopseudomonas palustris. Bacteriol. Proc.1968, P 127, 133Google Scholar
  33. Zumft, W. G.: The molecular basis of biological dinitrogen fixation. Struct. Bonding (Berlin)29, 1–65 (1976)Google Scholar
  34. Zumft, W. G., Mortenson, L. E.: Evidence for a catalytic centre heterogeneity of molybdoferredoxin fromClostridium pasteurianum. Eur. J. Biochem.35, 401–409 (1973)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • W. G. Zumft
    • 1
  • F. Castillo
    • 1
  1. 1.Institut für Botanik der UniversitätErlangenGermany

Personalised recommendations