Advertisement

Journal of comparative physiology

, Volume 142, Issue 4, pp 423–428 | Cite as

Xanthine excretion in a desert scorpion,Paruroctonus mesaensis

  • Stanley D. Yokota
  • Vaughan H. Shoemaker
Article

Summary

The nature of the nitrogen excretory products of a desert scorpion (Paruroctonus mesaensis) was investigated. Two dimensional thin-layer chromatography revealed one major component, comigrating with xanthine, and a minor component which occurred sporadically and comigrated with hypoxanthine. The identity of xanthine as the major nitrogenous waste was confirmed with additional chromatographic systems, by ultraviolet spectrophotometry, and by enzymatic analysis.

P. measensis excretes over 90% of its waste nitrogen in the form of xanthine, and is the first animal shown to be primarily xanthotelic. Most other arachnids excrete primarily guanine. No guanine or uric acid was detected inP. mesaensis urine, although some uric acid, probably of dietary origin, was found in fecal material. Some possible mechanisms for, and consequences of, xanthine excretion are discussed.

Keywords

Uric Acid Human Physiology Guanine Spectrophotometry Xanthine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert A, Brown DJ (1954) Purines, Part I. Stability to acid and alkali, solubility, ionization, comparison with pteridines. J Chem Soc 1954:2060–2071Google Scholar
  2. Anderson JF (1966) The excreta of spiders. Comp Biochem Physiol 17:973–982Google Scholar
  3. Boné G (1943) Recherches sur les glandes coxales et la régulation de milieu interne chez L'Ornithodorus moubata. Ann Soc R Zool Belg 74:16–31Google Scholar
  4. Bursell E (1967) The excretion of nitrogen in insects. Adv Insect Physiol 4:33–67Google Scholar
  5. Campbell JW (1973) Nitrogen excretion. In: Prosser CL (ed) Comparative animal physiology. Saunders, Philadelphia, pp 279–316Google Scholar
  6. Crabtree GW, Henderson JR (1971) Rate-limiting steps in the interconversion of purine ribonucleotides in Ehrlich Ascites tumor cellsin vitro. Cancer Res 31:985–991Google Scholar
  7. Gangolli S, Nicholson TF (1966) The determination of blood ammonia. Clin Chim Acta 14:585–592Google Scholar
  8. Grégoire J, Grégorie J, Miranda F (1955) Sur la présence de grandes quantités de guanine et de faibles quantités d'agmatine dans les excréta de 2 espèces de Scorpions (Androctonus australis [L] etAndroctonus amoreuxi [Aud et Sav]). CR Seances Soc Biol Marseille 149:1439–1441Google Scholar
  9. Gyure WL (1973) Colorimetric determination of certain pteridines and purines. Anal Biochem 51:421–428Google Scholar
  10. Haggag G, Fouad Y (1965) Nitrogenous excretion in arachnids. Nature 207:1003–1004Google Scholar
  11. Hamdy BH (1972) Biochemical and physiological studies of certain ticks (Ixodoidea). Nitrogenous excretory products ofArgas (Persicargas) arboreus Kaiser, Hoogstraal and Kohls, and of other argasid and ixodid species. J Med Entomol 9:346–350Google Scholar
  12. Henderson JF, Paterson ARP (1973) Nucleotide metabolism. Academic Press, New YorkGoogle Scholar
  13. Hodge LD, Glassman E (1967) Purine catabolism inDrosophila melanogaster I. Reaction leading to xanthine dehydrogenase. Biochim Biophys Acta 149:335–343Google Scholar
  14. Horne FR (1969) Purine excretion in five scorpions, a uropygid and a centipede. Biol Bull 137:155–160Google Scholar
  15. Horne FR (1977) Ureotelism in the slug,Limax favus Linné. J Exp Zool 199:227–232Google Scholar
  16. Humphrys WF (1975) The food consumption of a wolf spider,Geolycosa godeffroyi (Araneae: Lycosidae) in the Australian Capital Territory. Oecologia 18:343–358Google Scholar
  17. Jaenicke L (1974) A rapid micromethod for the determination of nitrogen and phosphate in biological material. Anal Biochem 61:623–627Google Scholar
  18. Jezewska MM (1969) The nephridial excretion of guanine, xanthine and uric acid in slugs (Limacidae) and snails (Helicidae). Acta Biol Polonica 16:313–320Google Scholar
  19. Kanungo MS, Bohidar SC, Patnaik BK (1962) Excretion in the scorpion,Palamnaeus bengalensis C. Koch. Physiol Zool 35:201–203Google Scholar
  20. Lederer E, Lederer M (1957) Chromatography. Elsevier, New YorkGoogle Scholar
  21. McEnroe WD (1961) Guanine excretion by the two-spotted spider mite (Tetranychus telarius [L.]). Ann Entomol Soc Am 54:925–926Google Scholar
  22. Mitchell HK, Glassman E, Hadorn E (1959) Hypoxanthine in rosy and maroon-like mutants ofDrosophila melanogaster. Science 129:268–269Google Scholar
  23. Plesner P, Kalckar HM (1956) Enzymic micro-determinations of uric acid, hypoxanthine, xanthine adenine, and xanthopterine by ultraviolet spectrophotometry. Meth Biochem Anal 3:97–110Google Scholar
  24. Rao KP, Gopalakrishnareddy T (1962) Nitrogen excretion in arachnids. Comp Biochem Physiol 7:175–178Google Scholar
  25. Rasmont R, Vandermeersche G, Castiaux P (1958) Ultrastructure of the coxal glands of the scorpion. Nature 182:328–329Google Scholar
  26. Rosen H (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys 67:10–15Google Scholar
  27. Said EE (1961) On some aspects of the nitrogenous excretion of the scorpionButhus quinquestriatus HE. Egypt Acad Sci Proc 16:15–20Google Scholar
  28. Savory T (1964) Arachnida. Academic Press, New YorkGoogle Scholar
  29. Schmidt G, Liss M, Thannhauser SJ (1955) Guanine, the principal nitrogenous component of the excrements of certain spiders. Biochim Biophys Acta 16:533–535Google Scholar
  30. Vajropala K (1935) Guanine in the excreta of archnids. Nature 36:145Google Scholar
  31. Wieser W, Schweitzer G (1970) A re-examination of the excretion of nitrogen by terrestrial isopods. J Exp Biol 52:267–274Google Scholar
  32. Yokota SD (1979) Water, energy and nitrogen metabolism in the desert scorpionParuroctonus mesaensis. PhD dissertation, University of California, Riverside, 316 ppGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Stanley D. Yokota
    • 1
  • Vaughan H. Shoemaker
    • 1
  1. 1.Department of BiologyUniversity of CaliforniaRiversideUSA

Personalised recommendations