Advertisement

Journal of comparative physiology

, Volume 136, Issue 1, pp 61–66 | Cite as

Body temperature, metabolic rate, and insulation in winter and summer acclimatized mute swans (Cygnus olor)

  • Claus Bech
Article

Summary

  1. 1.

    Oxygen consumption and body temperature were measured at various ambient temperatures in summer and winter acclimatized mute swans.

     
  2. 2.
    In summer acclimatized birds the basal metabolic rate was 0.654 ml O2·gs.w.−1·h−1 and the body temperature was 39.5°C. The thermoneutral range extended from 1 to 15°C. Below the lower critical temperature (T1c) the oxygen consumption increased according to the formula:
    $$\dot V_{O_2 } = 0.665 - 0.014 T_A .$$
     
  3. 3.
    In winter acclimatized birds, theT1c was above 5.5°C. In the range of ambient temperatures between −35.0°C and 5.5°C the oxygen consumption was given by the formula:
    $$\dot V_{O_2 } = 0.931 - 0.007 T_A .$$
     
  4. 4.

    At low ambient temperatures the summer acclimatized birds had a significantly lower body temperture, being 39.0°C against 39.7°C in the winter acclimatized birds.

     
  5. 5.

    During cold exposure at ambient temperatures below theT1c, the winter acclimatized swans continued to rely on reduced conductance for thermal homeostasis, while summer swans similary cold exposed depended primarily on increased heat production, i.e. a metabolic response.

     

Keywords

Oxygen Ambient Temperature Oxygen Consumption Human Physiology Body Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aschoff, J., Pohl, H.: Der Ruheumsatz von Vögeln als Funktion der Tageszeit und der Körpergröße. J. Ornithol.111, 38–47 (1970)Google Scholar
  2. Benedict, F. G., Fox, E. L.: The gaseous metabolism of large wild birds under aviary life. Proc. Am. Phil. Soc.66, 511–534 (1927)Google Scholar
  3. Benedict, F. G., Lee, R. C.: Lipogenesis in the animal body, with special reference to the physiology of the goose. Carnegie Inst. Washington Publ.489, 1–232 (1937)Google Scholar
  4. Calder, W. A.: Heat loss from small birds: analogy with Ohm's law and a reexamination of the “Newtonian model”. Comp. Biochem. Physiol.43A, 13–20 (1972)Google Scholar
  5. Calder, W. A., King, J. R.: Thermal and caloric relations in brids. In: Avain biology, Vol. 4. Farner, D. S., King, J. R. (eds.), pp. 259–413. New York: Academic Press 1974Google Scholar
  6. Chaffee, R. R. J., Roberts, J. C.: Temperature acclimation in birds and mammals. Ann. Rev. Physiol.33, 155–202 (1971)Google Scholar
  7. Coulombe, H. N.: Physiological and physical aspects of temperature regulation in the burrowing owlSpeotyto cunicularia. Comp. Biochem. Physiol.35, 307–337 (1970)Google Scholar
  8. Dawson, W. R., Carey, C.: Seasonal acclimatization to temperature in Cardueline Finches I. Insulative and metabolic adjustment. J. Comp. Physiol.112, 317–333 (1976)Google Scholar
  9. Dawson, W. R., Hudson, J. W.: Birds. In: Comparative physiology of thermoregulation, Vol. 1. Whittow, G. C. (ed.), pp. 223–310. New York: Academic Press 1970Google Scholar
  10. Drent, R. H., Stonehouse, B.: Thermoregulatory responses of the Peruvian penguin,Spheniscus humboldti. Comp. Biochem. Physiol.40A, 689–710 (1971)Google Scholar
  11. Gessaman, J. A.: Bioenergetics of the snowy owl (Nyctea scandiaca). Arc. Alp. Res.4, 223–238 (1972)Google Scholar
  12. Herreid, C. F. II, Kessel, B.: Thermal conductance in birds and mammals. Comp. Biochem. Physiol.21, 405–414 (1967)Google Scholar
  13. Hissa, R., Palokangas, R.: Thermoregulation in the titmouse (Parus major L.). Comp. Biochem. Physiol.33, 941–953 (1970)Google Scholar
  14. Irving, L., Krog, H., Monson, M.: The metabolism of some Alaskan animals in winter and summer. Physiol. Zool.28, 173–185 (1955)Google Scholar
  15. Kendeigh, S. C.: Energy responses of birds to their thermal environments. Wilson Bull.81, 441–449 (1969)Google Scholar
  16. Lasiewski, R. C., Weathers, W. W., Bernstein, M. H.: Physiological responses of the giant hummingbird,Patagona gigas. Comp. Biochem. Physiol.23, 797–813 (1967)Google Scholar
  17. Le Maho, Y., Delclitte, P., Chatonnet, J.: Thermoregulation in fasting emperor penguins under natural conditions. Am. J. Physiol.231, 913–922 (1976)Google Scholar
  18. Pinshow, B., Fedak, M. A., Battles, D. R., Schmidt-Nielsen, K.: Energy expenditure for thermoregulation and locomotion in emperor penguins. Am. J. Physiol.231, 903–912 (1976)Google Scholar
  19. Romijn, C., Lokhorst, W.: Heat regulation and energy metabolism in the domestic fowl. In: Physiology of the domestic fowl. Horton-Smith, C., Amoroso, E. C. (eds.), pp. 211–227. Edinburg: Oliver & Boyd 1966Google Scholar
  20. Scholander, P. F., Hock, R., Walters, V., Johnson, F., Irving, L.: Heat regulation in some arctic and tropical mammals and birds. Biol. Bull.99, 237–258 (1950)Google Scholar
  21. Schwan, M. W., Williams, D. D.: Temperature regulation in the common raven of interior Alaska. Comp. Biochem. Physiol.60A, 31–36 (1978)Google Scholar
  22. Voous, K. H.: Atlas of European birds. London: Nelson 1960Google Scholar
  23. Walsberg, G. E., King, J. R.: The relationship of the external surface area of birds to skin surface area and body mass. J. Exp. Biol.76, 185–189 (1978)Google Scholar
  24. West, G. C.: Seasonal differences in resting metabolic rate of Alaskan Ptarmingan. Comp. Biochem. Physiol.42A, 867–876 (1972a)Google Scholar
  25. West, G. C.: The effect of acclimation and acclimatization on the resting metabolic rate of the common Redpoll. Comp. Biochem. Physiol.43A, 293–310 (1972b)Google Scholar
  26. Withers, P. C.: Measurement of\(\dot V_{o_2 } ,\dot V_{Co_2 } \), and evaporative water loss with a flow-through mask. J. Appl. Physiol.42, 120–123 (1977)Google Scholar
  27. Zar, J. H.: The use of the allometric model for avain standard metabolism—body weight relationships. Comp. Biochem. Physiol.29, 229–234 (1969)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Claus Bech
    • 1
  1. 1.Department of ZoophysiologyUniversity of AarhusAarhus C.Denmark

Personalised recommendations