Journal of Materials Science

, Volume 14, Issue 9, pp 2128–2138 | Cite as

Correlations of the craze profile in PMMA with Dugdale's plastic zone profile

  • S. J. Israel
  • E. L. Thomas
  • W. W. Gerberich


The craze opening profile in PMMA has been determined as a function of stress intensity using interference optics and a special wedge loading device. An attempt was made to correlate the craze profile with the corresponding parameters (crack opening displacement and plastic zone length) predicted by the Dugdale model. Over the mid-range of stress intensities (KI=0.4 to 1.0 MPa m1/2), samples which were annealed after precracking were found to exhibit a profile similar in shape but smaller than that predicted by the Dugdale model. The lower limit of this range marks the critical stress intensity for crazing in PMMA. Both the craze length and the opening at the craze-crack interface increase with increasing stress intensity and, due to strain-hardening of the craze material, reach maximum values of about 40μm and 3μm respectively atKI=1.0 MPa m1/2. Experimental uncertainties cannot account for the profile difference and it is therefore concluded that the Dugdale model is not fully adequate to describe craze geometries in PMMA. The discrepency between the Dugdale model and the experimental data is suggested to be due to either fibril strain-hardening and/or the formation of a plane strain plastic zone ahead of the craze.


Fibril Stress Intensity PMMA Plastic Zone Open Displacement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. S. Dugdale,Mech. Phys. Solids 8 (1960) 100.Google Scholar
  2. 2.
    G. W. Weidmann andW. Doll, Abstracts from Third International Conference on Deformation, Yield and Fracture of Polymers (1976).Google Scholar
  3. 3.
    H. R. Brown andI. M. Ward,Polymer 14 (1973) 469.Google Scholar
  4. 4.
    N. J. Mills andN. Walker,ibid 17 (1976) 335.Google Scholar
  5. 5.
    G. P. Morgan andI. M. Ward,ibid 18 (1977) 87.Google Scholar
  6. 6.
    B. Cotterell,Int. J. Fract. Mech. 4 (1968) 209.Google Scholar
  7. 7.
    R. P. Kambour,J. Polymer Sci. A-2 4 (1976) 349.Google Scholar
  8. 8.
    J. R. Rice, Proceedings of the First International Conference on Fracture (Sendai), Vol. 1 (Japanese Society for Strength and Fracture of Materials, Tokyo, 1966) 283.Google Scholar
  9. 9.
    J. N. Goodier andF. A. Field, “Fracture in Solids”, edited by D. C. Drucker and J. J. Gilman (Interscience, New York, 1963).Google Scholar
  10. 10.
    Plexiglass G. Product Literature, Rohm and Haas Company, Philadelphia, PA.Google Scholar
  11. 11.
    B. D. Lauterwasser andE. J. Kramer, MSC Report #3076, Cornell University (1978).Google Scholar
  12. 12.
    E. J. Kramer, “Developments in Polymer Fracture”, edited by E. H. Andrews (Applied Sciences, London, 1979).Google Scholar
  13. 13.
    M. J. Doyle,J. Mater. Sci. 8 (1973) 1185.Google Scholar
  14. 14.
    G. R. Irwin andJ. A. Kies,Welding J. Res. Suppl. 33 (1954) 1935.Google Scholar
  15. 15.
    M. F. Kanninen,Int. J. Fract. 9 (1973) 83.Google Scholar
  16. 16.
    P. Paris andG. Sih, in “Frature Toughness Testing and Its Applications”, ASTM STP 381, Philadelphia (1965).Google Scholar
  17. 17.
    R. E. Robertson,J. Adhesion 7 (1975) 121.Google Scholar
  18. 18.
    H. Tada, P. Paris andG. Irwin, “The Stress Analysis of Cracks Handbook” (Del Research Corporation, Hellertown, Penn, 1973).Google Scholar
  19. 19.
    J. R. Rice, in “Fracture”, edited by H. Leibowitz (Academic Press, New York, 1968).Google Scholar
  20. 20.
    C. O. Harris, “Introduction to Stress Analysis” (MacMillan, New York, 1959).Google Scholar
  21. 21.
    O. K. Spurr Jr. andW. D. Neigisch,J. Appl. Polymer Sci. 6 (1962) 585.Google Scholar
  22. 22.
    R. D. Kambour andR. W. Kopp,J. Polymer Sci. A-2 7 (1969) 183.Google Scholar
  23. 23.
    J. C. Newman Jr.,Eng. Fract. Mech. 1 (1963) 137.Google Scholar
  24. 24.
    G. T. Hahn andA. R. Rosenfield,Acta Met. 13 (1965) 293.Google Scholar
  25. 25.
    R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials” (Wiley, New York, 1976).Google Scholar
  26. 26.
    J. C. Bauwens,J. Polymer Sci. A-2 5 (1967) 1145.Google Scholar
  27. 27.
    S. S. Sternstein, L. Ongchin andA. Silverman,Appl. Polymer Symp. 7 (1969) 175.Google Scholar

Copyright information

© Chapman and Hall Ltd. 1979

Authors and Affiliations

  • S. J. Israel
    • 1
  • E. L. Thomas
    • 1
  • W. W. Gerberich
    • 1
  1. 1.Department of Chemical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations