Advertisement

Acta Neuropathologica

, Volume 76, Issue 2, pp 135–141 | Cite as

Variability in the activity of respiratory chain enzymes in mitochondrial myopathies

  • Y. Koga
  • I. Nonaka
  • N. Sunohara
  • R. Yamanaka
  • K. Kumagai
Regular Papers

Summary

Four patients with mitochondrial abnormality had multiple muscle biopsies at several year intervals during which respiratory chain enzyme activities were shown to be quite variable. In three patients, progression of the disease paralleled the decrease in respiratory chain enzyme activity. In one patient, the clinical and pathological findings improved with age as is seen in the benign infantile form of cytochromec oxidase (CCO) deficiency. The variability in these mitochondrial disorders may result from the varied proportions of normal and abnormal mitochondria in the muscle cells in which the mitochondria are said to be randomly replicated from numerous mitochondrial DNA copies.

Key words

Mitochondrial myopathy Respiratory chain enzyme Cytochromec oxidase NADH-coenzyme Q reductase Ragged-red fiber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465Google Scholar
  2. 2.
    Behbehani AW, Goebel H, Osse G, Gabriel M, Langenbeck U, Berden J, Berger R, Schutgens RBH (1984) Mitochondrial myopathy with lactic acidosis and deficient activity of muscle succinate cytochromec oxidoreductase. Eur J Pediatr 143:67–71Google Scholar
  3. 3.
    Berenberg RA, Pellock JM, DiMauro S (1977) Lumping or splitting? “Ophthalmoplegia-plus” or Kearns-Sayre syndrome? Ann Neurol 1:37–54Google Scholar
  4. 4.
    Bookelman H, Trijbels JMF, Sengers RCA, Janssen AJM (1978) Measurement of cytochromes in human skeletal muscle mitochondria isolated from fresh and frozen stored muscle specimens. Biochem Med 19:366–373Google Scholar
  5. 5.
    Bresolin N, Zeviani M, Bonilla E, Miller RH, Leech RW, Shanske S, Nakagawa M, DiMauro S (1985) Fatal infantile cytochromec oxidase deficiency: decrease of immunologically detectable enzyme in muscle. Neurology 35:802–812Google Scholar
  6. 6.
    Bresolin N, Moggio M, Bet L, Gallanti A, Prelle A, Nobile-Orazio E, Adobbati L, Ferrante C, Pellegrini G, Scarlato G (1987) Progressive cytochromec oxidase deficiency in a case of Kearns-Sayre syndrome: morphological, immunological, and biochemical studies in muscle biopsies and autopsy tissues. Ann Neurol 21:564–572Google Scholar
  7. 7.
    Brooke MH, Kaiser KK (1970) Muscle fiber types: how many and what kind? Arch Neurol 23:369–379Google Scholar
  8. 8.
    DiMauro S, Nicholson JF, Hays AP, Eastwood AB, Papadimitriou A, Koenigsberger R, DeVivo DC (1983) Benign infantile mitochondrial myopathy due to reversible cytochromec oxidase deficiency. Ann Neurol 14:226–234Google Scholar
  9. 9.
    DiMauro S, Bonilla E, Zeviani M, Nakagawa M, DeVivo DC (1985) Mitochondrial myopathies. Ann Neurol 17:521–538Google Scholar
  10. 10.
    Dubowitz V, Brooke MH (1973) Muscle biopsy, a modern approach. Saunders, London Philadelphia Toronto, pp 20–33Google Scholar
  11. 11.
    Egger J, Wilson J (1983) Mitochondrial inheritance in a mitochondrially mediated disease. N Engl J Med 21:142–146Google Scholar
  12. 12.
    Engel WK, Cunningham GG (1963) Rapid examination of muscle tissue: an improved trichrome stain method for freshfrozen biopsy sections. Neurology 13:919–923Google Scholar
  13. 13.
    Fukuhara N, Tokiguchi S, Shirakawa S, Tsubaki T (1980) Myoclonus epilepsy associated with ragged-red fibers (mitochondrial abnormalities): disease entity or syndrome? Light and electronmicroscopic studies of two cases and review of the literature. J Neurol Sci 47:117–133Google Scholar
  14. 14.
    Giles RE, Blanc H, Cann HM, Wallace DC (1980) Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci USA 77:6715–6719Google Scholar
  15. 15.
    Hayasaka K, Metoki K, Satoh T (1982) Comparison of cytosolic and mitochondrial enzyme alterations in the livers of propionic or methylmalonic acidemia: a reduction of cytochromec oxidase activity. Tohoku J Exp Med 137:329–334Google Scholar
  16. 16.
    Holliday PL, Climie RW, Gilroy J, Mahmud MZ (1983) Mitochondrial myopathy and encephalopathy: three cases — a deficiency of NADH-CoQ dehydrogenase? Neurology 33:1619–1622Google Scholar
  17. 17.
    Jerusalem F, Angelini C, Engel AG Groover RV (1973) Mitochondria-lipid-glycogen disease of muscle. Arch Neurol 29:162–169Google Scholar
  18. 18.
    Johnson MA, Turnbull DM, Dick DJ, Sherrat HSA (1983) A partial deficiency of cytochromec oxidase in chronic progressive external ophthalmoplegia. J Neurol Sci 60:31–53Google Scholar
  19. 19.
    Kennaway NG, Buist NRM, Darley-Usmar VM, Papadimitriou A, DiMauro S, Kelley RI, Capaldi RA, Blank NK, D'Agostino A (1984) Lactic acidosis and mitochondrial myopathy associated with deficiency of several components of complex III of the respiratory chain. Pediatr Res 18:991–999Google Scholar
  20. 20.
    Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-phenol reagent. J Biol Chem 193:265–275Google Scholar
  21. 21.
    Luft R, Ikkos D, Palmieri G, Ernster L, Afzelius B (1962) A case of severe hypermetabolism of nonthyroid origin with a defect in the maintenance of mitochondrial respiratory control: a correlated clinical, biochemical, and morphological study. J Clin Invest 41:1776–1804Google Scholar
  22. 22.
    Mackler B (1967) Microsomal DPNH-cytochromec reductase. Methods Enzymol 10:551–553Google Scholar
  23. 23.
    Moreadith RW, Batshaw ML, Ohnishi T (1984) Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J Clin Invest 74:685–697Google Scholar
  24. 24.
    Morgan-Hughes JA, Hayes DJ, Clark JB, Landon DN, Swash M, Stark RJ, Rudge P (1982) Mitochondrial encephalomyopathies. Brain 105:553–582Google Scholar
  25. 25.
    Orii Y, Okunuki K (1965) Studies on cytochromea. Cytochrome oxidase activity of the Okunuki preparation and its activation by heat, alkali and detergent treatments. J Biochem 58:561–568Google Scholar
  26. 26.
    Pavlakis SG, Phillips PC, DiMauro S, DeVivo DC, Rowland LP (1984) Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS): a distinctive clinical syndrome. Ann Neurol 16:481–488Google Scholar
  27. 27.
    Reichmann H, Rohkamm R, Zeviani M, Servidei S, Ricker K, DiMauro S (1986) Mitochondrial myopathy due to complex III deficiency with normal reducible cytochromeb concentration. Arch Neurol 43:957–961Google Scholar
  28. 28.
    Shokeir MHK, Shreffler DC (1969) Cytochrome oxidase deficiency in Wilson's disease; a suggested ceruloplasmin function. Proc Natl Acad Sci USA 62:867–872Google Scholar
  29. 29.
    Tzagoloff A (1982) Mitochondria, Plenum, New York, pp 235–321Google Scholar
  30. 30.
    Zeviani M, Peterson P, Servidei S, Bonilla E, DiMauro S (1987) Benign reversible muscle cytochromec oxidase deficiency: a second case. Neurology 37:64–67Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Y. Koga
    • 1
  • I. Nonaka
    • 1
  • N. Sunohara
    • 1
  • R. Yamanaka
    • 2
  • K. Kumagai
    • 3
  1. 1.Division of Ultrastructural ResearchNational Institute of Neuroscience, NCNPKodaira, TokyoJapan
  2. 2.Shida Municipal HospitalFujieda, ShizuokaJapan
  3. 3.Kanagawa Rehabilitation CenterAtsugi, KanagawaJapan

Personalised recommendations