Journal of inclusion phenomena

, Volume 3, Issue 2, pp 125–133 | Cite as

Laser microprobe mass analysis (LAMMA) of pyridine adsorbed on some clay minerals from Turkey

  • S. Akyüz
  • J. K. Waele
  • T. Akyüz
  • F. C. Adams
Article

Abstract

Using laser microproble mass analysis (LAMMA), it is possible to characterize the inorganic composition of clays and to study adsorption phenomena. Natural sepiolite, (Na-sepiolite), montmorillonite and saponite samples from Anatolia (Turkey) have been investigated. All the clays gave different fingerprint mass spectra which allowed a quick estimation of the relative amounts of exchangeable cations as well as the trace contaminants and the homogeneity of their distribution. The adsorption behaviour of these clays for pyridine was also studied and it appeared that pyridine molecules penetrated the inner layers, as well as being adsorbed on the external surface.

Key words

adsorption laser microprobe mass analysis (LAMMA) clay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Henstra, E. B. Bisdom, A. Jongerius, H. J. Heinen, and S. Heier:Z. Anal. Chem. 308, 280 (1981).Google Scholar
  2. 2.
    J. F. Muller, C. Berthé, and J. M. Magar:Z. Anal. Chem. 308, 312 (1981).Google Scholar
  3. 3.
    J. K. De Waele, I. Verhaert, E. F. Vansant, and F. C. Adams:Surface and Interface Anal. 5, 186 (1983).Google Scholar
  4. 4.
    B. K. G. Theng:The Chemistry of Clay-Organic Reactions, p. 9, John Wiley (1974).Google Scholar
  5. 5.
    V. C. Farmer and M. M. Mortland:J. Chem. Soc. (A) 344 (1966).Google Scholar
  6. 6.
    J. M. Serratosa:Clays Clay Min. 14, 385 (1966).Google Scholar
  7. 7.
    R. L. Parfitt and M. M. Mortland:Soil Sci. Soc. Am. Proc. 32, 355 (1968).Google Scholar
  8. 8.
    P. Cloos, A. Moreale, C. Broers, and C. Badot:Clay Min. 14, 307 (1979).Google Scholar
  9. 9.
    V. Lorprayoon and R. A. Condrate:Appl. Spectrosc. 36, 696 (1982).Google Scholar
  10. 10.
    R. M. Barrer, N. Mackenzie and D. M. Macleod:J. Phys. Chem. 58, 568 (1954).Google Scholar
  11. 11.
    K. Brauner and A. Preisinger:Tschermaks Min. Petr. Mitt. 6, 120 (1956).Google Scholar
  12. 12.
    J. J. Fahey, M. Ross and J. M. Axelrod:Am. Min. 45, 270 (1960).Google Scholar
  13. 13.
    A. J. Dandy:J. Phys. Chem. 72, 334 (1968).Google Scholar
  14. 14.
    A. J. Dandy:J. Chem. Soc. 2383 (1971).Google Scholar
  15. 15.
    C. Serna and T. Fernandez-Alvarez:An. Quim. 71, 371 (1975).Google Scholar
  16. 16.
    S. Akyüz and T. Akyüz:Hacettepe Bull. Natural Sci. Eng. 11, 47 (1982).Google Scholar
  17. 17.
    S. Akyüz and T. Akyüz:Hacettepe Bull. Natural Sci. Eng. 12, 157 (1983).Google Scholar
  18. 18.
    H. Vogt, H. J. Heinen, S. Meier, and R. Wechsung:Z. Anal. Chem. 308, 195 (1981).Google Scholar
  19. 19.
    R. Kaufmann, H. Hillenkamp and R. Wechsung:Med. Progr. Technol. 6, 109 (1979).Google Scholar
  20. 20.
    E. Denoyer, R. Van Grieken, F. C. Adams and D. F. S. Natusch:Anal. Chem. 54, 26A (1982).Google Scholar
  21. 21.
    D. M. Hercules, R. J. Day, K. Balasonmugan, T. A. Dand, and C. P. Li:Anal. Chem. 54, 280A (1982).Google Scholar
  22. 22.
    J. M. Serratosa:Clays Clay Min. 16, 93 (1968).Google Scholar
  23. 23.
    R. M. Barrer and D. M. Macleod:Trans. Faraday Soc. 50, 980 (1954).Google Scholar
  24. 24.
    F. Annabi-Bergaya, M. I. Cruz, L. Gatineau, and J. J. Fripiat:Clay Min. 16, 115 (1981).Google Scholar
  25. 25.
    R. Keren and G. A. O'Connor:Clays Clay Min. 30, 341 (1982).Google Scholar
  26. 26.
    Y. Kiyatama and A. Michishita:J. Chem. Soc. Chem. Commun. 401 (1981).Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • S. Akyüz
    • 1
  • J. K. Waele
    • 2
  • T. Akyüz
    • 3
  • F. C. Adams
    • 2
  1. 1.Department of Physics (Fizik-83)Hacettepe UniversityAnkaraTurkey
  2. 2.Department of ChemistryUniversity of Antwerp (UIA)WilrijkBelgium
  3. 3.Mineral Research and Exploration Institute (MTA)AnkaraTurkey

Personalised recommendations