Acta Neuropathologica

, Volume 75, Issue 4, pp 377–384 | Cite as

γ-Enolase and glial fibrillary acidic protein in nervous system tumors

An immunohistochemical study using specific monoclonal antibodies
  • P. Cras
  • J. J. Martin
  • J. Gheuens
Regular Papers

Summary

A large series of central and peripheral nervous system tumors was studied for the presence of glial fibrillary acidic protein (GFAP) and γ-enolase (neuron-specific enolase, NSE), using specific monoclonal antibodies (mAbs). Occurrence in and specificity of GFAP to glial and mixed tumors was confirmed and depended on the malignancy grade and features such as meningeal invasion. Using a well-characterized mAb, γ-enolase was demonstrated in neuronal, as well as in a whole range of non-neuronal tumors. This lack of specificity of γ-enolase prohibits its use as an exclusive neuronal marker. Nevertheless quantization or comparison with other types of enolases could still prove to be useful in well-defined situations. The advantages inherent to mAbs and a highly sensitive detection system turn GFAP stainings into a specific and readily reproducible technique.

key words

Glial fibrillary acidic protein Neuron-specific enolase Monoclonal antibodies Immunocytochemistry nervous system tumors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achtstatter T, Moll R, Anderson A, Kuhn C, Pitz S, Schwechheimer K, Franke WW (1986) Expression of glial filament protein (GFP) in nerve sheaths and non-neuronal cells, re-examined using monoclonal antibodies with special emphasis on the co-expression of GFP and cytokeratins in epithelial cells of human salivary gland and pleomorphic adenomas. Differentiation 31:206–227Google Scholar
  2. 2.
    Albrechtsen M, Von Gerstenberg AC, Bock E (1984) Mouse monoclonal antibodies reacting with human brain glial fibrilary acidic protein. J Neurochem 42:86–93Google Scholar
  3. 3.
    Beemer FA, Vlug AMC, Van Veelen CWM, Rijksen G, Staal GEJ (1984) Isozyme patterns of childhood tumors. Cancer 54:293–296Google Scholar
  4. 4.
    Bignami A, Dahl D (1977) Specificity of the glial fibrillary acidic protein for astroglia. J Histochem Cytochem 25:466–469Google Scholar
  5. 5.
    Bonnin JM, Bubinstein LJ (1984) Immunohistochemistry of central nervous system tumors. Its contributions to neurosurgical diagnosis. J Neurosurg 60:1121–1133Google Scholar
  6. 6.
    Bonnin JM, Pena CE, Rubinstein LJ (1983) Mixed capillary hemangioblastoma and glioma. J Neuropathol Exp Neurol 42:504–516Google Scholar
  7. 7.
    Budka H (1983) Immunohistological demonstration of serum proteins and structural and viral antigens in paraffin sections of the nervous tissues. Ann NY Acad Sci 420:176–184Google Scholar
  8. 8.
    Carlei F, Polak JM, Ceccamea A Marangos PJ, Dahl D, Cocchia D, Michetti F, Lezoche E, Speranza V (1984) Neuronal and glial markers in tumors of neuroblastic origin. Virchows Arch [A] 404:313–324Google Scholar
  9. 9.
    Choi H-SH, Anderson PJ (1985) Immunohistochemical diagnosis of olfactory neuroblastoma. J Neuropathol Exp Neurol 44:18–31Google Scholar
  10. 10.
    Coffin CM, Mukai K, Dehner LP (1983) Glial differentiation in medulloblastomas. Am J Surg Pathol 7:555–565Google Scholar
  11. 11.
    Collins VP (1984) Monoclonal antibodies to glial fibrillary acidic protein in the cytologic diagnosis of brain tumors. Acta Cytol 28:401–406Google Scholar
  12. 12.
    Collins VP, Moser R (1983) Monoclonal antibodies to glial fibrillary acidic protein. I. Characterization. Acta Pathol Microbiol Immunol Scand [A] 91:269–279Google Scholar
  13. 13.
    Courel M-N, Girard N, Delpech B, Chauzy C (1986) Specific monoclonal antibodies to glial fibrillary acidic protein (GFAP). J Neuroimmunol 11:271–276Google Scholar
  14. 14.
    Dahl D, Bignami A (1983) The glial fibrillary acidic protein and astrocytic 10-nm filaments. In: Lajtha A (ed) Handbook of neurochemistry, vol 5. Plenum, New York, pp 127–151Google Scholar
  15. 15.
    Deck JHN, Rubinstein LJ (1981) Glial fibrillary acidic protein in stromal cells of some capillary hemangioblastomas: significance and possible implications of an immunoperoxidase study. Acta Neuropathol (Berl) 54:173–181Google Scholar
  16. 16.
    DeArmond SJ, Eng, LF, Rubinstein LJ (1980) The application of glial fibrillary acidic protein (GFAP) immunohistochemistry in neurooncology. A progress report. Pathol Res Pract 168:374–394Google Scholar
  17. 17.
    Dickson DW, Hart MN, Menezes A, Cancilla PA (1983) Medulloblastoma with glial and rhabdomyoblastic differentiation. A myoglobin and glial fibrillary acidic protein immunohistochemical and ultrastructural study. J Neuropathol Exp Neurol 42:639–647Google Scholar
  18. 18.
    Dranoff G, Bigner DD (1984) A word of caution in the use of neuron-specific enolase expression in tumor diagnosis. Arch Pathol Lab Med 108:535Google Scholar
  19. 19.
    Eng LF (1982) The glial fibrillary acidic protein: the major protein constituent of glial filaments. Scand J Immunol [Suppl 9] 15:41–51Google Scholar
  20. 20.
    Eng LF, Rubinstein LJ (1978) Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J Histochem Cytochem 26:513–522Google Scholar
  21. 21.
    Gheuens J, De Schutter E, Noppe M, Lowenthal A (1984) Identification of several forms of the glial fibrillary acidic protein, or α-albumin, by a specific monoclonal antibody. J Neurochem 43:964–970Google Scholar
  22. 22.
    Girard N, Manoury R, Courel M-N, Delpech B (1984) Obtention d'anticorps monoclonaux anti-protéine gliofibrillaire acide (GFAP) et étude de leur spécificité. C R Acad Sci (Paris) 298:517–522Google Scholar
  23. 23.
    Gullotta F, Schindler F, Schmutzler R, Weeks-Seifert A (1985) GFAP in brain tumor diagnosis: possibilities and limitations. Pathol Res Pract 180:54–60Google Scholar
  24. 24.
    Haimoto H, Takahashi Y, Koshikawa T, Nagura H, Kato K (1985) Immunohistochemical localization of γ-enolase in normal human tissues other than nervous and neuroendocrine tissues. Lab Invest 52:257–263Google Scholar
  25. 25.
    Haimoto H, Takahashi M, Koshikawa T, Asai J Kato K (1986) Enolase isozymes in renal tubules and renal cell carcinoma. Am J Pathol 124:488–495Google Scholar
  26. 26.
    Hayano T, Kato K, Shimizu A, Ariyoshi Y, Yamada Y, Yamamoto R (1983) Production and characterization of a monoclonal antibody to nervous system-specific γγ enolase. J Biochem 93:1457–1460Google Scholar
  27. 27.
    Herpers MJHM, Budka H (1984) Glial fibrillary acidic protein (GFAP) in oligodendroglial tumors: gliofibrillary oligodendroglioma and transitional oligoastrocytoma as subtypes of oligodendroglioma. Acta Neuropathol (Berl) 64:265–272Google Scholar
  28. 28.
    Herpers MJHM, Budka H, McCormick D (1984) Production of glial fibrillary acidic protein (GFAP) by neoplastic cells: adaptation to the microenvironment. Acta Neuropathol (Berl) 64:333–338Google Scholar
  29. 29.
    Kleinman GM, Young RH, Scully RE (1984) Ependymoma of the ovary: report of three cases. Hum Pathol 15:632–638Google Scholar
  30. 30.
    Mannoji H, Takeshita I, Fukui M, Ohta M, Kitamura K (1981) Glial fibrillary acidic protein in medulloblastoma. Acta Neuropathol (Berl) 55:63–69Google Scholar
  31. 31.
    Marangos PJ, Zomzely-Neurath C, Luk DCM, York C (1975) Isolation and characterization of the nervous system specific protein 14-3-2 from rat brain. J Biol Chem 250:1884–1891Google Scholar
  32. 32.
    Marangos PJ, Campbell IC, Schmechel DE, Murphy DL, Goodwin FK (1980) Blood platelets contain a neuron-specific enolase subunit. J Neurochem 34:1254Google Scholar
  33. 33.
    McLendon RE, Burger PC, Pegram CN, Eng LF, Bigner DD (1986) The immunohistochemical application of three anti-GFAP monoclonal antibodies to formalin-fixed, paraffin-embedded, normal and neoplastic brain tissues. J Neuropathol Exp Neurol 45:692–703Google Scholar
  34. 34.
    Memoli VA, Brown EF, Gould VE (1984) Glial fibrillary acidic protein (GFAP) immunoreactivity in peripheral nerve sheath tumors. Ultrastruct Pathol 7:269–275Google Scholar
  35. 35.
    Paasivuo R, Saksela E (1983) Non-specific binding of mouse immunoglobulins by swollen-bodied astrocytes — a potential source of confusion in human brain immunohistology. Acta Neuropathol (Berl) 59:103–108Google Scholar
  36. 36.
    Packer RJ, Sutton LN, Rorke LB, Littman PA, Sposto R, Rosenstock JG, Bruce DA, Schut L (1984) Prognostic importance of cellular differentiation in medulloblastoma of childhood. J Neurosurg 61:296–301Google Scholar
  37. 37.
    Pahlman S, Esscher T, Nilsson K (1986) Expression of γ-subunit of enolase, neuron-specific enolase, in human nonneuroendocrine tumors and derived cell lines. Lab Invest 54:554–560Google Scholar
  38. 38.
    Perentes E, Rubinstein LJ (1986) Non-specific binding of mouse myeloma IgM immunoglobulin by human myelin sheaths and astrocytes. Acta Neuropathol (Berl) 70:284–288Google Scholar
  39. 39.
    Roessmann U, Velasco ME, Gambetti P, Autilio-Gambetti L (1983) Neuronal and astrocytic differentiation in human neuroepithelial neoplasms. An immunohistochemical study. J Neuropathol Exp Neurol 42:113–121Google Scholar
  40. 40.
    Royds JA, Ironside JW, Taylor CB, Graham DI, Timperley WR (1986) An immunoshistochemical study of glial and neuronal markers in primary neoplasms of the central nervous system. Acta Neuropathol (Berl) 70:320–326Google Scholar
  41. 41.
    Rubinstein LJ, Brucher J-M (1981) Focal ependymal differentiation in choroid plexus papillomas. An immunoperoxidase study. Acta Neuropathol (Berl) 53:29–33Google Scholar
  42. 42.
    Schindler E, Gullotta F (1983) Glial fibrillary acidic protein in medulloblastomas and other embryonic CNS tumors of children. Virchows Arch [A] 398:263–275Google Scholar
  43. 43.
    Shuangshoti S, Kasantikul V, Suwanwela N, Suwanwela C (1984) Solitary primary intracranial extracerebral glioma. Case report. J Neurosurg 61:777–781Google Scholar
  44. 44.
    Slowik F, Jellinger K, Gaszo L, Fischer J (1985) Gliosarcomas: histological, immunohistochemical, ultrastructural and tissue culture studies. Acta Neuropathol (Berl) 67:201–210Google Scholar
  45. 45.
    Soler Federsppiel BS, Cras P, Gheuens J, Andries D, Lowenthal A (1987) Human γγ-enolase: two site immunoradiometric assay with a single monoclonal antibody. J Neurochem 48:22–28Google Scholar
  46. 46.
    Sternberger LA (1972) Immunocytochemistry. Wiley and Sons, New York, pp 122–126Google Scholar
  47. 47.
    Tapia PJ, Polak JM, Barbosa AJM (1981) Neuron-specific enolase is produced by neuroendocrine tumors. Lancet I:808–811Google Scholar
  48. 48.
    Taratuto AL, Molina H, Monges J (1983) Choroid plexus tumors in infancy and childhood. Focal ependymal differentiation. Acta Neuropathol (Berl) 59:304–308Google Scholar
  49. 49.
    Tascos NA, Parr J, Gonatas NK (1982) Immunocytochemical study of the glial fibrillary acidic protein in human neoplasms of the central nervous system. Hum Pathol 13:454–458Google Scholar
  50. 50.
    Vinores SA, Bonnin JM, Rubinstein LJ, Marangos PJ (1984) Immunohistochemical demonstration of neuron-specific enolase in neoplasms of the CNS and other tissues. Arch Pathol Lab Med 108:536–540Google Scholar
  51. 51.
    Yung WKA, Tepper J, Young DF (1983) Diffuse bone marrow metastasis by glioblastoma: premortem diagnosis by peroxidase anti-peroxidase staining for glial fibrillary acidic protein. Ann Neurol 14:581–585Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • P. Cras
    • 1
  • J. J. Martin
    • 1
  • J. Gheuens
    • 1
  1. 1.Laboratory of Neuropathology, Born-Bunge FoundationUniversity of AntwerpWilrijkBelgium

Personalised recommendations