Acta Neuropathologica

, Volume 22, Issue 1, pp 42–57 | Cite as

Elektronenmikroskopische Untersuchungen am Gehirn und an den Spinalganglien von Mäussembryonen (Tag 12–17) nach Gabe von Vincristin

  • W. Noack

Electron microscopic investigations on brain and spinal ganglia of mice fetuses (day 12–17) after application of vincristine


Brain and spinal ganglia of mouse fetuses were examined under the light- and electon microscope 4 to 24 h after a 5 mg/kg dosage of vincristine. The following changes were observed:
  1. 1.

    In many proliferating cells, an inhibition of mitosis during metaphase could already be found after 4 h.

  2. 2.

    Numerous interphase cells develop damaged nuclear structures and organelles at the end of the 24 h period.


On the one hand mitotic inhition can be demonstrated only in the proliferating paraventricular zones of the brain and also thinly scattered in the spinal ganglia. On the other hand cells demonstrating the typical pattern of damage to nucleus and organelles can be found diffusely spread through the whole cortex and spinal ganglia. The chromatin is clumped together in the nuclei of these cells, it is also extremely electron dense and arranged in wide threads. The perinuclear cistern is very widened and has often disintegrated into vesicles. Hereby wide connections between caryo- and cytoplasma develop. The number and size of the rough ER is decreased, often puffed up and vesicularly disintegrated. The quantity of free ribosomes has also decreased and polysomes are scarcely seen. The other cell organelles are often swollen.

The connection between vincristine and the ultrastructural changes can be partly understood on the basis of the biochemical findings.

Key words

Vincristine Brain Spinal Ganglia Mouse Fetus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfert, M.: Chemical differentiation of nuclear protein during spermatogenesis in the salmon. J. biophys. biochem. Cytol.2, 104–114 (1956).Google Scholar
  2. Allfrey, V. G.: Nuclear ribosomes, messenger RNA and protein synthesis. Exp. Cell Res. Suppl.9, 183–212 (1963).Google Scholar
  3. Armstrong, J. G., Dyke, R. W., Founts, P. J., Gahimer, J. E.: Hodgkin's disease carcinoma of the breast and other tumors treated with vinblastine sulfate. Cancer Chemother. Rep.18, 49–71 (1962).Google Scholar
  4. Bensch, K. G., Malawista, S. E.: Microtubule crystals: A new biophysical phenomenon induced by vinca alkaloids. Nature (Lond.)218, 1176–1177 (1968).Google Scholar
  5. ——: Microtubular crystals in mammalian cells. J. Cell Biol.40, 95–107 (1969).Google Scholar
  6. Bloch, D. P., Hew, H. J. C.: Schedule of spermatogenesis in the pulmonate snail helix aspera with special reference to histone transition. J. biophys. biochem. Cytol.7, 515–531 (1960).Google Scholar
  7. Bohannon, R. A., Miller, D. G., Diamond, H. D.: Vincristine in the treatment of lymphomas and leukemias. Cancer Res.23, 613–621 (1963).Google Scholar
  8. Carbone, P. P., Bono, V., Frei, E., Brindley, C. O.: Clinical studies of vincristine. Blood21, 640–647 (1963).Google Scholar
  9. Cardinali, G., Cardinali, G., Enein, M. A.: Studies of the antimitotic activity of leurocristine (vincristine). Blood21, 102–110 (1963).Google Scholar
  10. Carpentieri, U., Williams, J. P. G.: Stathmokinetic agents and the mitotic index in embryo and adult rats. Curr. Mod. Biol.2, 4–6 (1968).Google Scholar
  11. Creasey, W. H., Markiw, M. E.: Biochemical effects of the vinca alkaloids. II. A comparison of the effects of colchicine vinblastine and vincristine on the synthesis of ribonucleic acids in Ehrlich Ascites carcinoma cells. Biochim. biophys. Acta (Amst.)87, 601–609 (1964).Google Scholar
  12. Das, C. C., Kaufmann, B. P., Gay, H.: Histone-protein transition in drosophila meanogaster. I. Changes during spermatogenesis. Exp. Cell Res.35, 507–514 (1964).Google Scholar
  13. Ferm, V. H.: Congenital malformations in hamster embryos after treatment with vinblastine and vincristine. Science141, 426 (1963).Google Scholar
  14. —: Effect of transplacental mitotic inhibitors on the fetal hamster eye. Anat. Rec.148, 129–133 (1964).Google Scholar
  15. Frei, E., Whang, J., Scoggins, R. B., van Scott, E. J., Rall, D. P., Ben, M.: The stathmokinetic effect of vincristine. Cancer Res.24, 1918–1925 (1964).Google Scholar
  16. Frenster, J. H., Allfrey, V. G., Mirsky, A. E.: Repressed and active chromatin isolated from calf thymus lymphocytes. Proc. nat. Acad. Sci. (Wash.)50, 1026–1032 (1963).Google Scholar
  17. Gierer, A.: Function of aggregated ribosomes in protein synthesis. J. molec. Biol.6, 148 (1963).Google Scholar
  18. Joneja, M., Ungthavorn, S.: Teratogenic effects of vincristine in three lines of mice. Teratology2, 235–240 (1969).Google Scholar
  19. Journey, L. J., Burdman, J., Whaley, A.: Electron microscopic study of spinal ganglia from vincristine-treated mice. J. nat. Cancer Inst.43, 603–609 (1969).Google Scholar
  20. Karon, M., Freireich, E. J., Frei, E.: A preliminary report on vincristine sulfate—a new active agent for treatment of acute leukemia. Pediatrics30, 791–796 (1962).Google Scholar
  21. Kemp, C. L.: Electron microscope autoradiographic studies of RNA metabolism in trillium erectum microspores. Chromosoma (Berl.)19, 137–148 (1966).Google Scholar
  22. Keyserlingk, D., Boll, J., Meuret, G.: Ultrastruktur der gestörten Erythropoiese bei einer kongenitalen dyserythropoietischen Anämie. Klin. Wschr.48, 728–736 (1970).Google Scholar
  23. Krishan, A.: Time-lapse and ultrastructure studies on the reversal of mitotic arrest induced by Vinblastine sulfate in Earle's L-Cells. J. nat. Cancer Inst.41, 581–595 (1968).Google Scholar
  24. —, Hsu, D.: Observations on the association of helical polyribosomes and filaments with vincristine-induced crystals in Earle's L-cell fibroblasts. J. Cell Biol.43, 553–563 (1969).Google Scholar
  25. Littau, U. C., Alfrey, V. G., Frenster, J. H., Mirsky, A. E.: Active and inactive regions of nuclear chromatin as revealed by electron microscope autoradiography. Proc. nat. Acad. Sci (Wash.)52, 93–100 (1964).Google Scholar
  26. Maraldi, N. M., Simonelli, L., Petazzoni, P., Barbieri, M.: Ribose crystallization. III. Ribosome and protein crystallization in hypothermic cell cultures treated with vinblastine sulfate. J. submicr. Cytol.2, 51–67 (1970).Google Scholar
  27. Marantz, R., Shelanski, M.: Structure of microtubular crystals induced by vinblastine in vitro. J. Cell Biol.44, 234–238 (1970).Google Scholar
  28. Marks, P. A., Rifkind, R. A., Danon, D.: Maturation of erythroid cells: Biochemical and ultrastructural analysis. Trans. Ass. Amer. Physics76, 34–44 (1963).Google Scholar
  29. Merker, H. J., Villegas, H.: Elektronenmikroskopische Untersuchungen zum Problem des Stoffaustausches zwischen Mutter und Keim bei Rattenembryonen des Tages 7–10. Z. Anat. Entwickl.-Gesch.131, 325–346 (1970).Google Scholar
  30. Myer, W. De: Cleft lip jaw induced in fetal rats by vincristine. Arch. Anat.48, 181–186 (1965).Google Scholar
  31. Neubert, D., Merker, H. J., Köhler, E., Krowke, R., Barrach, H. J.: Advances in the Biosciences 6. Biochemical aspects of teratology. Schering Symposium on intrinsic and extrinsic factors in early mammalian development. Venice, April 20–23. 1970: Pergamon-Press, Vieweg 1970.Google Scholar
  32. Palmer, C. G., Livengood, D., Warren, A. N., Simpson, P. J., Johnson, J. S.: Action of vincaleukoblastine on mitosis in vitro. Exp. Cell Res.20, 198–201 (1960).Google Scholar
  33. —, Warren, A. K.: The cytological action of alkaloids of vinca rosea. Proc. Amer. Ann. Cancer Res.3, 350 (1962).Google Scholar
  34. Robertis, E. D. P. De: Histophysiology of synapses and neurosecretion. New York: The Macmillan Comp. 1964.Google Scholar
  35. Schochet, S. S., Jr., Lampert, P. W., Earle, R. M.: Neuronal changes induced by intrathecal vincristine sulfate. J. Neuropath. exp. Neurol.27, 645–663 (1968).Google Scholar
  36. Selawry, O. S., Hananian, J.: Vincristine treatment of cancer in children. J. Amer. med. Ass.183, 741–746 (1963).Google Scholar
  37. Tamaki, M., Sugawara, T., Kameyama, Y., Murakami, U.: Vincristine induced malformations in the rat embryo. Ann. Rep. Inst. Eno. Med. Nagoya Univ.15, 61–72 (1967).Google Scholar
  38. Ungthavorn, S., Joneja, M.: Effects of teratogenic doses of vincristine on mitotic cells in the fetuses of DBA mice. Amer. J. Anat.126, 291–298 (1969).Google Scholar
  39. Wagner, E. K., Roizman, B.: Effect of the vinca alkaloids on RNA synthesis in human cells in vitro. Science162, 569–570 (1968).Google Scholar
  40. Warner, J. R., Rich, A., Hall, C. E.: Electron microscope studies of ribosomal clusters synthesizing hemoglobin. Science138, 1399–1403 (1962).Google Scholar
  41. Wiśniewski, H., Shelanski, M. L., Terry, R. O.: Effects of mitotic spindle inhibitors on neurotubules and neurofilaments in anterier horn cells. J. Cell Biol.38, 224–229 (1968).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • W. Noack
    • 1
  1. 1.II. Anatomisches Institut der Freien Universität BerlinBerlin

Personalised recommendations