Skip to main content
Log in

Linear wave conversion processes in the theory of the proton whistler

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The linear coupling between the different kinds of waves propagating in a warm plasma inhomogeneous along thex direction is investigated in order to locate the regions (ω,k) space where two of the roots of the characteristic equation coalesce. Firstly, using the approximation of geometrical optics the differential equation is derived and wave propagation at fixed wave numberk z is studied in these special cases for which the characteristic equation reduces to a biquadratic. When the density gradient is parallel to the magnetic field, a detailed analysis of the different properties of the waves shows that the mechanism proposed by Gurnett and others to explain the characteristics of the proton whistler is unlikely to operate, even if a wave coupling occurs at the so called cross over frequency for small incidence angles. The only relevant process occurs when the density gradient is perpendicular to the magnetic field for waves propagating at small incidence angles. It is shown that, close to a coalescence point, but within the limit of the geometrical optics approximation, one of the WKB solutions is a mixed (transverse-longitudinal) mode which becomes purely longitudinal in the limit of large wave numbers. Consequently, as this wave has E almost parallel tok, coalescence implies that the waves are nearly longitudinal at the singular point, in agreement with other results. Next, application of the theory is made to some relevant space observations. It is shown that the proton whistler could be the result of a linear coupling between the extraordinary and the slow ion cyclotron waves close to the Buchsbaum resonance in ionospheric regions above 300 to 400 km where the H+ density begins to grow. Transformation conditions are given which favour the coupling mechanism in regions of strong latitudinal gradients. Finally, a comparison is made with experiment which confirms the principal features of the present theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buchsbaum, S. J. and Hasegawa, A.: 1966,Phys. Rev. 143, 303.

    Google Scholar 

  • Budden, K. G.: 1966,Radio Waves in the Ionosphere, Cambridge University Press.

  • Budden, K. G. and Smith, M. S.: 1974,Proc. Roy. Soc. A341, 1.

    Google Scholar 

  • Callen, J. D. and Guest, G. E.: 1971,Phys. Fluids 14, 1588.

    Google Scholar 

  • Callen, J. D. and Guest, G. E.: 1973,Nucl. Fusion 13, 87.

    Google Scholar 

  • Chan, K. W., Burton, R. K., Holzer, R. E., and Smith, E. J.: 1972,J. Geophys. Res. 77, 635.

    Google Scholar 

  • De Almeida Azevedo and Vianna, M. L.: 1969,Phys. Rev. 177, 300.

    Google Scholar 

  • Dolgopolov, V. V.: 1966,Zh. Tek. Fiz. 36, 273, (Sov. Phys. Techn. Phys. 11, 198).

    Google Scholar 

  • Dreicer, H.: 1964,Bull Am. Phys. Soc. 9, 512.

    Google Scholar 

  • Erskova, V. A. and Sivtseva, L. D.: 1971,Space Research XI, p. 1063, Academischer Verlag, Berlin.

    Google Scholar 

  • Ginzburg, V. L.: 1960,The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press.

  • Glacolev, V. M.: 1972,Plasma Phys. 14, 301; and14, 315.

    Google Scholar 

  • Golant, V. E.:Sov. Phys. Techn. Phys. 16, 1980, 1972, (Zh. Tek. Fiz. 41, 2492, 1971).

    Google Scholar 

  • Golant, V. E. and Pilya, A. D.: 1971,Usp. Fiz. Nauk. 104, 413; (Sov. Phys. Usp. 14, 413, 1972).

    Google Scholar 

  • Gurnett, D. A., Shawan, S. D., Brice, N. M., and Smith, R. L.: 1965,J. Geophys. Res. 70, 1665.

    Google Scholar 

  • Gurnett, D. A., Pfeiffer, G. V., Anderson, R. R., Mosier, S. R., and Cauffman, D. P.: 1969,J. Geophys. Res. 74, 4631.

    Google Scholar 

  • Jones, D.: 1970,The Theory of the Effect of Collisions on Ion Cyclotron Whistlers. Plasma Waves in Space and in the Laboratory, Vol. 2, p. 471, Edinburgh University Press.

  • Kuehl, H. H.: 1967,Phys. Rev. 154, 124.

    Google Scholar 

  • Kuehl, H. H., O'Brien, B. B., and Stewart, G. E.: 1970,Phys. Rev. 13, 1595.

    Google Scholar 

  • Landauer, G.: 1962,J. Nucl. Energy, Part C4, No. 6, 395.

    Google Scholar 

  • Pearson, G. A.: 1966,Phys. Fluids 9, 2454.

    Google Scholar 

  • Peratt, A. L. and Kuehl, H. H.: 1972,Radio Sci. 7, 309.

    Google Scholar 

  • Pilya, A. D.: 1966,Zh. Tek. Fiz. 36, 818: (Sov. Phys. Techn. Phys. 11, 609).

    Google Scholar 

  • Pilya, A. D. and Fedorov, V. I.: 1969,Zh. Eksp. Teor. Fiz. 57, 1198; (Sov. Phys. JETP 30, 653, 1970).

    Google Scholar 

  • Rodriguez, P. and Gurnett, D. A.: 1971,J. Geophys. Res. 76, 960.

    Google Scholar 

  • Rosenbluth, M. N. and Simon, A.: 1965,Phys. Fluids 8, 1300.

    Google Scholar 

  • Shafranov, V. D.: 1967, in M. A. Leontovitch (ed.),Reviews of Plasma Physics, Consultant Bureau Enterprises Inc., New York, Vol. 3, p. 1.

    Google Scholar 

  • Shaw, R. R. and Gurnett, D. A.: 1971,J. Geophys. Res. 76, 1851.

    Google Scholar 

  • Shawan, S. D.: 1966,J. Geophys. Res. 27, 71.

    Google Scholar 

  • Shelley, E. G., Johnson, R. G., and Sharp, R. D.: 1972,J. Geophys. Res. 77, 6104.

    Google Scholar 

  • Smith, M. S.: 1974,Proc. Roy. Soc. London A336, 229.

    Google Scholar 

  • Stéfant, R.: 1970,J. Geophys. Res. 75, 7182.

    Google Scholar 

  • Stéfant, R.: 1977,J. Geophys. Res. 82, 1846.

    Google Scholar 

  • Stéfant, R.: 1978,Phys. Fluids 21, 55.

    Google Scholar 

  • Stéfant, R.: 1979, in preparation.

  • Stix, T. H.: 1962,The Theory of Plasma Waves, McGraw Hill, New York.

    Google Scholar 

  • Stix, T. H.: 1965,Phys. Rev. Letters 15, 878.

    Google Scholar 

  • Stringer, T. E.: 1963,Plasma Physics (Journal of Nuclear Energy, Part C),5, 89.

    Google Scholar 

  • Thomas, J. O., Rycroft, M. J., Colin, L., and Chan, K. L.: 1966, Jon Frihagen (ed.),The Electron Density Profiles in Ionosphere and Exosphere, North-Holland Publ. Co., New York, p. 299.

    Google Scholar 

  • Wait, J. R.: 1962,Electromagnetic Waves in Stratified Media, Pergamon Press, Oxford, p. 260.

    Google Scholar 

  • Wang, T.: 1971,J. Geophys. Res. 76, 947.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stéfant, R.J. Linear wave conversion processes in the theory of the proton whistler. Astrophys Space Sci 76, 301–328 (1981). https://doi.org/10.1007/BF00687496

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00687496

Keywords

Navigation