Advertisement

Acta Neuropathologica

, Volume 77, Issue 4, pp 412–419 | Cite as

Role of endoneural cells in experimental allergic neuritis and characterisation of a resident phagocytic cell

  • A. Stevens
  • M. Schabet
  • K. Schott
  • H. Wiethölter
Regular Papers

Summary

Electrophysiological, clinical and histological techniques were used to monitor the time course of events related to experimental allergic neuritis (EAN) in 48 Lewis rats. The primary lesion was found to be paranodal demyelination without cellular infiltration. Endoneural phagocytes derive from hematogenous ED1+ED2 monocytes and possibly from resident ED1 ED2+ monocytic cells, not from Schwann cells and fibroblasts. We demonstrate a population of monocytic Ia-bearing, ED1ED2+ spindle-shaped cells residing in normal peripheral nerve and provide evidence for their transformation into macrophages in the course of EAN.

Key words

Experimental allergic neuritis Monocytes Immunohistochemistry Electrophysiology Resident dendritic cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allt G (1975) The node of Ranvier in experimental allergic neuritis: an electron microscopic study. J Neurocytol 4: 63–76Google Scholar
  2. 2.
    Anderson PJ, Song SK (1962) Acid phosphatase in the nervous system. J Neuropathol Exp Neurol 21: 263–283Google Scholar
  3. 3.
    Arnason BGW (1984) Acute inflammatory demyelinating polyradiculoneuropathies. In: Dyck PJ, Thomas PK, Lambert EH, Bunge R (eds) Peripheral neuropathy. Saunders, Philadelphia, pp 2050–2100Google Scholar
  4. 4.
    Arvidson B (1977) Cellular uptake of exogenous horseradish peroxidase in mouse peripheral nerve. Acta Neuropathol (Berl) 37: 35–41Google Scholar
  5. 5.
    Asbury AK (1970) The histogenesis of phagocytes during wallerian degeneration. Radioautographic observations. Proc 6th Int Cong Neuropathol, Paris, Masson, pp 666–682Google Scholar
  6. 6.
    Barclay RHM (1981) The localization of populations of lymphocytes defined by monoclonal antibodies in rat lymphoid tissues. Immunology 42: 593–600Google Scholar
  7. 7.
    Beelen RHJ, Estermans IL, Doepp EA, Dijkstra CD (1987) Monoclonal antibodies ED1, ED2, and ED3 against rat macrophages: expression of recognized antigens in different stages of differentiation. Transplant Proc 19: 3166–3170Google Scholar
  8. 8.
    Brideau RJ, Carter PB, Master WR, Mason DW, Williams AF (1980) Two subsets of rat T lymphocytes defined with monoclonal antibodies. Eur J Immunol 10: 609–615Google Scholar
  9. 9.
    Dijkstra CD, Doepp EA, Joling P, Kraal G (1985) The heterogenity of mononuclear phagocytes in lymphoid organs: distinct macrophage subpopulations in the rat recognized by monoclonal antibodies ED1, ED2 and ED3. Immunology 54: 589–599Google Scholar
  10. 10.
    Doinikow B (1911) Beiträge zur Histologie und Histopathologie des peripheren Nerven. In: Nissl F, Alzheimer A (eds) Histologische und Histopathologische Arbeiten über die Großhirnrinde. Fischer, Jena, pp 72–94Google Scholar
  11. 11.
    Dyck PJ (1975) Pathologic alterations of the peripheral nervous system in man. In: Dyck PJ, Thomas PK, Lambert EH (eds) Peripheral neuropathy. Saunders, Philadelphia, pp 296–336Google Scholar
  12. 12.
    Eng LF, Kosek JC, Forno L (1976) Immunohistochemistry of brain protein in fixed paraffin embedded tissue. Trans Am Soc Neurochem 7: 211–216Google Scholar
  13. 13.
    Gibson JD (1979) The origin of the neural macrophage: a quantitative ultrastructural study of cell population changes during Wallerian degeneration. J Anat 129: 1–19Google Scholar
  14. 14.
    Gilman SC, Rosenberg JS, Feldman JD (1982) Membrane phenotype of the rat cytotoxic T lymphocyte. J Immunol 129: 1012–1016Google Scholar
  15. 15.
    Goban Y, Saida T, Saida K, Nishitani H (1986) Role of nonspecific myelin destruction by delayed hypersensitivity in primary demyelination. J Neurol Sci 74: 97–109Google Scholar
  16. 16.
    Hart DNJ, Fabre JW (1981) Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues but not brain. J Exp Med 153: 347–361Google Scholar
  17. 17.
    Heiniger K, Stoll G, Linington C, Toyka KV, Wekerle H (1986) Conduction failure and nerve conduction slowing in experimental allergic neuritis induced by P2-specific T cell lines. Ann Neurol 19: 44–49Google Scholar
  18. 18.
    Holtzman E, Novikoff AB (1965) Lysosomes in the rat sciatic nerve following crush J Cell Biol 27: 651–668Google Scholar
  19. 19.
    Hsu SM, Raine L, Fanger H (1981) The use of avidin-biotinperoxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 29: 577–580Google Scholar
  20. 20.
    Hughes RA, Atkinson PF, Gray IA, Taylor WA (1987) Major histocompatibility antigens and lymphocyte subsets during experimental allergic neuritis in the Lewis rat. J Neurol 234: 390–395Google Scholar
  21. 21.
    Izumo S, Linington C, Wekerle H, Meyermann R (1985) A morphological study on experimental allergic neuritis mediated by T cell line specific for bovine P2 protein in the Lewis rat. Lab Invest 53: 209–218Google Scholar
  22. 22.
    Knight SC, Mertin J, Stackpoole A, Clark J (1983) Induction of immune responses in vivo with small numbers of veiled (dendritic) cells. Proc Natl Acad Sci USA 80: 6032–6035Google Scholar
  23. 23.
    Lassmann H, Vass K, Brunner C, Wisniewski HM(1986) Peripheral nervous system lesions in experimental allergic encephalomyelitis. Acta Neuropathol (Berl) 69: 193–204Google Scholar
  24. 24.
    Linington C, Izumo S, Suzuki M, Ukemura K, Meyermann R, Wekerle H (1984) A permanent rat T cell line that mediates EAN in the Lewis rat in vivo. J Immunol 133: 1946–1950Google Scholar
  25. 25.
    Mancardi GL, Cadoni A, Zicca A, Schenone A, Tabaton M, DeMartini I, Zacheo D (1988) HLA-DR Schwann cell reactivity in peripheral neuropathies of different origins. Neurology 38: 848–851Google Scholar
  26. 26.
    Mato M, Ookawara S, Mato TK, Namiki T (1985) An attempt to differentiate further between microglia and fluorescent granular perithelial (FGP) cells by their capacity to incorporate exogenous protein. Am J Anat 172: 125–140Google Scholar
  27. 27.
    McMaster WR, Williams AF (1979) Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur J Immunol 9: 426–433Google Scholar
  28. 28.
    Meyermann R, Linington C, Steigerwald U, Boehme D, Izumo S (1985) Passively induced EAN by P2 protein specific T line cells: the role of edema. In: Annual Report Max-Planck-Society Clinical Research Unit for Multiple Sclerosis. 1985, 3, pp 122–126Google Scholar
  29. 29.
    Morris JH, Hudson AR, Wedell G (1972) A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy. I. The traumatic degeneration of myelin in the proximal stump of the divided nerve. Z Zellforsch 124: 76–102Google Scholar
  30. 30.
    Oehmichen M, Torvik A (1976) The origin of reactive cells in retrograde and Wallerian degeneration. Cell Tissue Res 173: 343–348Google Scholar
  31. 31.
    Oldfors A (1980) Macrophages in peripheral nerve; an ultrastructural and enzyme histochemical study on rats. Acta Neuropathol (Berl) 49: 43–49Google Scholar
  32. 32.
    Olsson T, Holmdahl R, Klareskog L, Forsum U, Kristensson K (1984) Dynamics of Ia-experessing cells and T lymphocytes of different subsets during experimental allergic neuritis in Lewis rats. J Neurol Sci 66: 141–149Google Scholar
  33. 33.
    Osborn M, Weber K (1983) Biology of disease: tumor diagnosis by intermediate filament typing. Lab Invest 48: 372–394Google Scholar
  34. 34.
    Ota K, Irie H, Takahashi K (1987) T cell subsets and Ia-positive cells in the sciatic nerve during the course of experimental allergic neuritis. J Neuroimmunol 13: 283–292Google Scholar
  35. 35.
    Pollard JD, Baverstock J, McLeod JG (1987) Class II antigen expression and inflammatory cells in the Guillain-Barre-syndrome. Ann Neurol 21: 337–341Google Scholar
  36. 36.
    Powell HC, Braheny SL, Myers RR, Rodriguez M, Lampert PW (1983) Early changes in experimental allergic neuritis. Lab Invest 48: 332–338Google Scholar
  37. 37.
    Saida K, Saida T, Kayama H, Nishitani H (1984) Rapid alterations of the axon membrane in antibody-mediated demyelination. Ann Neurol 15: 581–589Google Scholar
  38. 38.
    Scarpini E, Meola G, Baron PL Beretta S, Velicogna M, Moggio M, Buscaglia M, Doronzo R (1987) Human Schwann cells: cytochemical, ultrastructural and immunological studies in vivo and vitro. Basic Appl Histochem 31: 33–42Google Scholar
  39. 39.
    Schubert T, Friede RL (1981) The role of endoneural fibroblasts in myelin degradation. J Neuropathol Exp Neurol 40: 134–154Google Scholar
  40. 40.
    Simmons RD, Buzbee TM, Linthicum DS (1988) An immunohistochemical study of autoimmune encephalomyelitis and neuritis in the rabbit. J Neurol Sci 83: 293–304Google Scholar
  41. 41.
    Sminia T, DeGroot CJA, Dijkstra CD, Koetsier JC, Polman CH (1987) Macrophages in the central nervous system of the rat. Immunobiology 174: 43–50Google Scholar
  42. 42.
    Smith ME, Forno LS, Hofmann WW (1979) Experimental allergic neuritis in the Lewis rat. J Neuropathol Exp Neurol 38: 377–391Google Scholar
  43. 43.
    Stanley EF (1981) Sensory and motor nerve conduction velocity and the latency of the H reflex during growth of the rat. Exp Neurol 71: 497–506Google Scholar
  44. 44.
    Sumner AJ, Saida K, Saida T, Silberberg DH, Asbury AK (1982) Acute conduction block associated with experimental antiserum-mediated demyelination of peripheral nerve. Ann Neurol 11:469–477Google Scholar
  45. 45.
    Tapscott SJ, Bennett GS, Toyama Y, Kleinbart F, Holtzer H (1981) Intermediate filament proteins in the developing chick spinal cord. Dev Biol 86: 40–54Google Scholar
  46. 46.
    Waksman BH, Adams RD (1955) Allergic neuritis: an experimental disease of rabbits induced by the injection of peripheral nervous tissue and adjuvants. J Exp Med 102:213–236Google Scholar
  47. 47.
    Webster HF, DeSpiro D, Waksman B, Adams RD (1961) Phase and electron microscopic studies of experimental demyelination. II. Schwann cell changes in guinea pig sciatic nerves during experimental diphteric neuritis. J Neuropathol Exp Neurol 20: 5–34Google Scholar
  48. 48.
    Westland K, Pollard JD (1987) Proteinase induced demyelination. An electrophysiological and histological study. J Neurol Sci 82: 41–53Google Scholar
  49. 49.
    Wiethölter H, Hülser PJ (1985) Spinal somatosensory evoked potential in the rat after stimulation of the tibial nerve. Exp Neurol 89: 24–31Google Scholar
  50. 50.
    Wiethölter H, Schabet M, Hülser PJ (1987) Tiermodelle des Guillain-Barre-Syndroms. In: Poeck K, Hacke W, Schneider R (eds) Proceedings of the German Neurologic Society. Springer, Berlin Heidelberg New York Tokyo, pp 21–28Google Scholar
  51. 51.
    Wiethölter H, Hülser PJ, Linington C, Meier DH, Wessel K (1988) Electrophysiological follow up of experimental allergic neuritis mediated by a permanent T cell line in rats. J Neurol Sci 83: 1–14Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. Stevens
    • 1
  • M. Schabet
    • 1
  • K. Schott
    • 1
  • H. Wiethölter
    • 1
  1. 1.Abteilung für NeurologieUniversität TübingenTübingenGermany

Personalised recommendations