Journal of Materials Science

, Volume 31, Issue 10, pp 2693–2696 | Cite as

Determination of the range of lattice distortion in AIN sintered body by higher order laue zone pattern

  • S. Nakahata
  • T. Matsuura
  • K. Sogabe
  • A. Yamakawa


To analyse the magnitude and range of lattice distortion which is responsible for the low thermal conductivity in aluminium nitride (AIN) crystal grains, the higher order laue zone (HOLZ) pattern of transmission electron microscopy was used. The HOLZ patterns obtained from various positions in the AIN crystal grain show that the AIN crystal lattice is distorted in the vicinity of the grain-boundary phase, and the magnitude of lattice distortion becomes large as it approaches the grain-boundary phase. Also, the range of distortion extends to approximately 300 nm from the grain-boundary phase.


Polymer Aluminium Microscopy Electron Microscopy Transmission Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. SLACK,J. Phys. Chem. Solids. 34 (1973) 321.Google Scholar
  2. 2.
    G. E. ARCHANGELSKII, M. V. FOCK, S. I. PACESOVA and L. JASTRABIK,Phys. Stat. Sol. B 108 (1981) K117.Google Scholar
  3. 3.
    R. A. YOUNGMAN and J. H. HARRIS,J. Amer. Ceram. Soc. 73 (1990) 3238.Google Scholar
  4. 4.
    G. E. POTTER, A. K. KNUDSEN, J. C. TOU and A. CHOUDHURY,ibid. 75 (1992) 3215.Google Scholar
  5. 5.
    L. E. MCNEIL, M. GRIMSDITCH and R. H. FRENCH,ibid. 76 (1993) 1132.Google Scholar
  6. 6.
    M. STERNITZKE and G. MULLER,ibid. 77 (1994) 737.Google Scholar
  7. 7.
    C. J. N. WAGNER and E. N. AQUA, “Advances in X-ray analysis”, Vol. 7 (Plenum Press, New York, 1964) p. 46.Google Scholar
  8. 8.
    E. N. AQUA and C. N. J. WAGNER,Phil. Mag. 9 (1964) 565.Google Scholar
  9. 9.
    J. A. EADES (ed.), Special issues ofJ. Electron Microsc. Tech. on “Convergent beam electron diffraction”,13 Nos. 1,2 (1989).Google Scholar
  10. 10.
    M. J. KAUFMAN, D. D. PEARSON and H. L. FRASER,Phil. Mag. A54 (1986) 79.Google Scholar
  11. 11.
    M. TANAKA, M. TERAUCHI and T. KANEYAMA, “Convergent beam electron diffraction” (Tokyo, Jeol-Maruzen, 1988).Google Scholar
  12. 12.
    Y. TOMOKIYO, S. MATSUMURA, N. KUWANO, M. KOMINAMI, T. OKUYAMA and K. OKI,J. Electron Microsc. 35 (1986) 359.Google Scholar
  13. 13.
    W. WERDECKER and F. ALDINGER,IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-7 (1984) 399.Google Scholar
  14. 14.
    D. D. YOUNG, K. C. JUNGLING, T. L. WILLIAMSON and E. R. NICHOLS,IEEE J. Quantum Elec. Aug. (1972) 720.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • S. Nakahata
    • 1
  • T. Matsuura
    • 1
  • K. Sogabe
    • 1
  • A. Yamakawa
    • 1
  1. 1.Itami Research LaboratoriesSumitomo Electric Industries, Ltd.Japan

Personalised recommendations