Advertisement

Journal of Materials Science

, Volume 31, Issue 10, pp 2653–2660 | Cite as

Catastrophic fracture induced fracto-emission

  • Honglai Tan
  • Wei Yang
Papers

Abstract

Fracto-emissions accompanying crack propagation were observed in recent experiments. The energy impulses during and after each atomistic fracture increment stimulate the fracto-emission. A model of the atomic scale cleavage processes is proposed to formulate a catastrophic fracture theory relevant to these phenomena. A criterion for catastrophic jump of the cleavage potential is applied to representative crystals. We simulate the propagation of the emitted particles along a crack bounded by zigzag surfaces and quantify the long-time delay law of fracto-emissions after fracture.

Keywords

Polymer Recent Experiment Atomic Scale Cleavage Process Atomistic Fracture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. T. DICKINSON, E. E. DONALDSON and M. K. PARK,J. Mater. Sci. 16 (1981) 2897.Google Scholar
  2. 2.
    J. FUHRMANN, L. NICK, J. T. DICKINSON and L. C. JENSEN,J. Appl. Polym. Sci. 48 (1993) 2123.Google Scholar
  3. 3.
    S. C. LANGFORD, Z. MA and J. T. DICKINSON,J. Mater. Res. 4 (1989) 1272.Google Scholar
  4. 4.
    H. TAN and W. YANG (1995)Int. J. Fract. accepted.Google Scholar
  5. 5.
    Idem,78 (1995)J. Appl. Phys. submitted.Google Scholar
  6. 6.
    J. T. DICKINSON, L. C. JENSEN, S. C. LANGFORD and J. P. HIRTH,J. Mater. Res. 6 (1991) 112.Google Scholar
  7. 7.
    J. T. DICKINSON, S. C. LANGFORD and L. C. JENSEN,ibid. 8 (1993) 2921.Google Scholar
  8. 8.
    W. YANG, H. TAN and T. F. GUO,Model. Simul. Mater. Sci. Eng. 2 (1994) 767.Google Scholar
  9. 9.
    H. TAN and W. YANG,Acta Mech. Sinica 10 (1994) 150.Google Scholar
  10. 10.
    Idem, ibid. 10 (1994) 237.Google Scholar
  11. 11.
    G. P. CHEREPANOV, “Mechanics of Brittle Fracture” (Nauka Press, Moscow, 1974).Google Scholar
  12. 12.
    P. J. MILLER, C. S. COFFEY and V. F. DEVOST,J. Appl. Phys. 59 (1986) 913.Google Scholar
  13. 13.
    D. W. SHORT, R. A. RAPP and J. P. HIRTH,J. Chem. Phys. 57 (1972) 1381.Google Scholar
  14. 14.
    K. A. ZIMMERMAN, S. C. LANGFORD, J. T. DICKINSON and R. P. DION,J. Polym. Sci. 31 (1993) 1229.Google Scholar
  15. 15.
    M. P. TOSI, in “Solid State Physics”, Vol. 16, edited by F. Seitz and D. Turnbull (Academic, New York, 1964) p. 1.Google Scholar
  16. 16.
    J. J. GILMAN, “Fracture” (John Wiley, New York, 1959).Google Scholar
  17. 17.
    “Smithells Metals Reference Book”, edited by E. A. Bandes (Butterworths, London, 1983).Google Scholar
  18. 18.
    C. S. BARRETT and T. B. MASSALSKI, “Structure of Metals” (McGraw-Hill, New York, 1966).Google Scholar
  19. 19.
    K. J. HSIA, Z. SUO and W. YANG,J. Mech. Phys. Solids 42 (1994) 877.Google Scholar
  20. 20.
    M. COSTER and J. L. CHERMANT,Inter. Metals Rev. 28 (1983) 228.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Honglai Tan
    • 1
  • Wei Yang
    • 1
  1. 1.Department of Engineering MechanicsTsinghua UniversityBeijingPeople's Republic of China

Personalised recommendations