Journal of Materials Science

, Volume 31, Issue 10, pp 2539–2549 | Cite as

The relationship between the microstructure and microwave dielectric properties of zirconium titanate ceramics

  • F. Azough
  • R. Freer
  • C. -L. Wang
  • G. W. Lorimer


Zirconium titanate (ZrTiO4) ceramics have been prepared by the mixed oxide route using small additions of ZnO, Y2O3 or CuO. Specimens were sintered mainly at 1400 °C and cooled at various rates: water-quench, air-quench, 300 °C h−1, 120 °C h−1, 6 °C h−1 and 1 °C h−1. Products prepared with additives exhibited densities of at least 93% of the theoretical value. As the cooling rate after sintering was decreased, the length of the lattice parameter in the b direction was reduced and transmission electron diffraction revealed superlattice reflections associated with cation ordering. For specimens cooled at 1 °C h−1, electron diffraction patterns exhibited features consistent with an incommensurate superstructure in the a direction. The dielectricQ value of rapidly cooled (air-quenched) ceramics was 2000 at 5 GHz. With an increase in the degree of cation ordering theQ value increased to a maximum of 4400 for specimens cooled at 6 °C h−1. For specimens cooled at the slowest rate (1 °C h−1) theQ value fell to 2000 due in part to the presence of microcracks and exsolved ZrO2. Diffusion of trivalent impurities (yttria) into the host ZrTiO4 grains also led to a lowering of theQ values.

The microwave dielectric properties of zirconium titanate ceramics are sensitive to processing conditions and mircrostructural features. The highestQ values (lowest loss) should be achieved in homogeneous specimens, free of trivalent impurities and lattice defects, in which lowQ-value second phases, microcracks and pores are eliminated.


Microstructure Zirconium Cool Rate Yttria Electron Diffraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. NEGAS, G. YEAGER, S. BELL and N. COATS,Amer. Ceram. Soc. Bull. 72 (1993) 80.Google Scholar
  2. 2.
    R. D. RICHTMYER,J. Appl. Phys. 10 (1939) 391.Google Scholar
  3. 3.
    J. K. PLOURDE and C. L. REN,IEEE Trans. Microwave Theory Tech. MTT-29 (1981) 754.Google Scholar
  4. 4.
    R. FREER,Silicate Industriels 59 (1993) 191.Google Scholar
  5. 5.
    G. WOLFRAM and H. E. GOBEL,Mater. Res. Bull. 16 (1981) 1455.Google Scholar
  6. 6.
    K. WAKINO, K. MINAI and H. TAMURA,J. Amer. Ceram. Soc. 67 (1984) 278.Google Scholar
  7. 7.
    F. AZOUGH and R. FREER, in Proceedings of the 7th IEEE Symposium on application of ferroelectrics, June 1990, University of Illinois at Urbana-Champaign, USA, p. 198 (1991).Google Scholar
  8. 8.
    D. M. IDDLES, A. J. BELL and A. J. MOULSON,J. Mater. Sci. 27 (1992) 6303.Google Scholar
  9. 9.
    W. RATH,Keram. Radsch. 49 (1941) 137.Google Scholar
  10. 10.
    R. E. NEWNHAM,J. Amer. Ceram. Soc. 50 (1967) 216.Google Scholar
  11. 11.
    A. E. MCHALE and R. S. ROTH,ibid. 66 (1983) C. 18.Google Scholar
  12. 12.
    idem., ibid. 69 (1986) 827.Google Scholar
  13. 13.
    F. AZOUGH, Ph.D. Thesis, University of Manchester (1991).Google Scholar
  14. 14.
    T. YAMADA, K. URABE, H. IKAWA and H. SHIMOJIMA,J. Ceram. Soc. Japan 99 (1991) 380.Google Scholar
  15. 15.
    A. YAMAMOTO, K. TANAKA, H. MARUMO and HUKUNAGA,Acta Crystallogr. 47C (1991) 1588.Google Scholar
  16. 16.
    R. CHRISTOFFERSEN and P. K. DAVIES,J. Amer. Ceram. Soc. 75 (1992) 563.Google Scholar
  17. 17.
    Idem., Solid State Ionics 57 (1992) 59.Google Scholar
  18. 18.
    R. CHRISTOFFERSEN, P. K. DAVIES and X. WEI,J. Amer. Ceram. Soc. 77 (1994) 1441.Google Scholar
  19. 19.
    S. C. CAMPBELL, US Patent 4,785,375 (1988).Google Scholar
  20. 20.
    M. I. MENDELSON,J. Amer. Ceram. Soc. 52 (1969) 443.Google Scholar
  21. 21.
    B. W. HAKKI and P. D. COLEMAN,IRE Trans. on microwave theory and techniques MTT-8 (1960) 402.Google Scholar
  22. 22.
    D. HENNINGS and SCHNABEL,Philips J. Res. 38 (1983) 295.Google Scholar
  23. 23.
    F. AZOUGH, A. WRIGHT and R. FREER,J. Solid State Chem. 108 (1994) 294.Google Scholar
  24. 24.
    H. M. O'BRYAN, J. THOMSON and J. K. PLOURDE,Ber Dt. Keram. Ges. 55 (1978) 348.Google Scholar
  25. 25.
    G. H. JONKER and W. KWESTROO,J. Amer. Ceram. Soc. 41 (1958) 390.Google Scholar
  26. 26.
    R. C. GARVIE, in “High temperature oxides”, part II, edited by A. M. Alper (Academic Press, New York, 1970) p. 117.Google Scholar
  27. 27.
    V. M. FERREIRA, F. AZOUGH, J. L. BAPTISTA and R. FREER,Ferroelectrics 133 (1992) 127.Google Scholar
  28. 28.
    K. LICHTENECKER,Physik. Zeits. 27 (1926) 833.Google Scholar
  29. 29.
    S.-I. HIRANO, T. HAYASHI and A. HATTORI,J. Amer. Ceram. Soc. 74 (1991) 1320.Google Scholar
  30. 30.
    P. C. OSBOND, R. W. WHATMORE, F. W. AINGER,Brit. Ceram. Proc. 36 (1985) 167.Google Scholar
  31. 31.
    S. KAWASHIMA, M. NISHIDA, I. UEDA and H. OUCHI,J. Amer. Ceram. Soc. 66 (1983) 421.Google Scholar
  32. 32.
    K. MATSUMOTO, K. TAKADA and H. IOKIMURA, in Proceedings of the sixth IEEE International symposium on applications of ferroelectrics, June 1986, Lehigh University, Pennsylvania, USA (1986) p. 118.Google Scholar
  33. 33.
    Y. HIGUCHI, N. MICHIURA, T. TATEKAWA and H. TAMURA, in “Ceramic Transactions Vol. 53, Materials and Processes for Wireless Communications,” edited by T. Negas and H. Ling (Amer. Ceram. Soc., Westerville, OH) (1995) p. 153.Google Scholar
  34. 34.
    T. NEGAS, G. YEAGER, S. BELL and R. AMREN, in Proceedings of the International Conference on Chemistry of Electronic Ceramic Materials, held at Jackson WY, Aug. 1990 (NIST special publication 804, 1991) p. 21.Google Scholar
  35. 35.
    K. WAKINO, M. KATSUBE, H. TAMURA, N. NISHIKAWA and Y. ISHIKAWA,Joint Com. Record of 4th Inst. Elec. Eng. Japan 285 (1976) 6.Google Scholar
  36. 36.
    F. A. KROGER and H. J. VINK, in “Solid state physics”, Vol. 3, edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1956) p. 307.Google Scholar
  37. 37.
    F. AZOUGH and R. FREER,Brit. Ceram. Proc. 42 (1989) 225.Google Scholar
  38. 38.
    Idem., in Proceedings 1st European Ceramic Society Meeting, EUROCERAMICS, edited by G. de With, R. A. Terpstra and R. Metselaar, Vol. 2 (1989) p. 294.Google Scholar
  39. 39.
    A. V. ZAGORODNYUK, L. V. SADKOVSKAYA, G. V. SHAMRAI, I. P. KOVALEVSKAYA, R. L. MAGUNOV and G. A. TEFERIN,Zh. Neorg. Khim. 31 (1986) 2389.Google Scholar
  40. 40.
    K. WAKINO and H. TAMURA, In “Ceramic transactions Vol. 8, Ceramic Dielectrics: Composition, Processing and Properties” (edited by H. C. Ling and M. F. Yan) (American Ceramic Society, Westerville OH, 1990) p. 305.Google Scholar
  41. 41.
    N. MICHIURA, T. TATEKAWA, Y. HIGHUCHI and H. TAMURA,J. Amer. Ceram. Soc. 78 (1995) 793.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • F. Azough
    • 1
  • R. Freer
    • 1
  • C. -L. Wang
    • 1
  • G. W. Lorimer
    • 1
  1. 1.Materials Science CentreUniversity of Manchester/UMISTManchesterUK

Personalised recommendations