Applied Physics B

, Volume 45, Issue 4, pp 263–272 | Cite as

Continuously tunable VUV radiation (129–210 nm) by anti-Stokes Raman scattering in cooled H2

  • H. Wallmeier
  • H. Zacharias
Article

Abstract

The generation of tunable vacuum ultraviolet radiation by anti-Stokes Raman scattering of tunable ultraviolet dye-laser radiation in cold hydrogen has been investigated. The scattering efficiency of XeCl laser and Nd:YAG laser pumped commercial dye lasers and the influence of different beam profiles has been studied. Up to 12 anti-Stokes orders down to 129 nm were observed with output powers between about 20 kW at λ=191 nm and somewhat less than 100 W at λ=129 nm. The efficiency of transversely pumped lasers with an intensity peaked in the center of the beam profile was found to be higher than doughnut shaped intensity distributions. The cooling of the active gas to liquid nitrogen temperatures improved the output pulse energies 3 to 5 times on average. It was found that this intensity increase was caused mainly by the narrowing of the Raman linewidth upon cooling.

PACS

33.20N 42,65C 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Reintjes:Nonlinear Optical Parametric Processes in Liquids and Gases (Academic, New York 1984)Google Scholar
  2. 1a.
    J.F. Reintjes: Coherent Ultraviolet and Vacuum Ultraviolet Sources. InLaser Handbook, Vol. 5, ed. by M. Bass, M.L. Stitch (North-Holland, Amsterdam 1985)Google Scholar
  3. 2.
    W. Jamroz, B.P. Stoicheff: Generation of tunable coherent vacuum ultraviolet radiation. InProgress in Optics, Vol.20, ed. by E. Wolf (North-Holland, Amsterdam 1983)Google Scholar
  4. 3.
    R. Hilbig, G. Hilber, A. Lago, B. Wolff, R. Wallenstein: Comments At. Mol. Phys.18, 157 (1986)Google Scholar
  5. 4.
    V. Wilke, W. Schmidt: Appl. Phys.16, 151 (1978); ibid18, 177 (1979)Google Scholar
  6. 5.
    D.J. Brink, D. Proch: Opt. Lett.7, 494 (1982); J. Opt. Soc. Am.73, 23 (1983)Google Scholar
  7. 6.
    H. Schomburg, H.F. Döbele, B. Rückle: Appl. Phys. B30, 131 (1983)Google Scholar
  8. 6a.
    H.F. Döbele, M. Röwekamp, B. Rückle: IEEE J. QE-20, 1284 (1984)Google Scholar
  9. 7.
    M.M.T. Loy, P.P. Sorokin, J.R. Lankard: Appl. Phys. Lett.30, 415 (1977)Google Scholar
  10. 8.
    R. Frey, F. Pradere, J. Lukasik, J. Ducuing: Opt. Commun.22, 355 (1977)Google Scholar
  11. 8a.
    M. Bierry, R. Frey, F. Pradere: Rev. Sci. Instr.48, 733 (1977)Google Scholar
  12. 9.
    P. Rabinowitz, B.N. Perry, N. Levinos: IEEE J. QE-22, 797 (1986)Google Scholar
  13. 10.
    D.C. Hanna, D.J. Pointer, D.J. Pratt: IEEE J. QE-22, 332 (1986)Google Scholar
  14. 11.
    W. Meier, G. Ahlers, H. Zacharias: J. Chem. Phys.85, 2599 (1986)Google Scholar
  15. 12.
    J.L. Oudar, Y.R. Shen: Phys. Rev. A22 1141 (1980)Google Scholar
  16. 13.
    W.K. Bischel, M.J. Dyer: Phys. Rev. A33, 3113 (1986)Google Scholar
  17. 14.
    J.A. Duardo, F.M. Johnson, L.J. Nugent: IEEE J. QE-4, 397 (1968)Google Scholar
  18. 15.
    G.V. Venkin, G.M. Krochik, L.L. Kulyuk, D.J. Maleev, Yu.G. Khronopulo: JETP Lett.21, 105 (1975)Google Scholar
  19. 15a.
    V.S. Butylkin, V.G. Venkin, V.P. Protasov, P.S. Fisher, Yu.G. Khronopulo, M.F. Shalyaev: Sov. Phys. JETP43, 430 (1976)Google Scholar
  20. 16.
    W.K. Bischel, M.J. Dyer: J. Opt. Soc. Am. B3, 677 (1986)Google Scholar
  21. 17.
    E.E. Hagenlocker, R.W. Minck, W.G. Rado: Phys. Rev.154, 226 (1967)Google Scholar
  22. 18.
    l'Air Liquide:Encyclopedie des Gaz (Elsevier, Amsterdam 1976)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • H. Wallmeier
    • 1
  • H. Zacharias
    • 1
  1. 1.Fakultät für Physik, UniversitätBielefeld 1Fed. Rep. Germany

Personalised recommendations