International Journal of Theoretical Physics

, Volume 8, Issue 5, pp 341–352 | Cite as

On the quantum mechanical treatment of decaying non-relativistic systems

  • L. Lanz
  • L. A. Lugiato
  • G. Ramella


The usual treatment of decaying non-relativistic particles by means of a non-unitary irreducible representation of the Galilei group is deduced from a suitable formulation of symmetry principles. In such a formulation time translation is distinguished from time evolution; this point is crucial to obtain the irreversible behaviour of unstable particles.


Field Theory Time Evolution Elementary Particle Quantum Field Theory Irreducible Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balescu, R. and Wallemborn, J. (1971).Physica s' Gravenhage,54, 477.Google Scholar
  2. Bargmann, V. (1954).Annals of Mathematics,59, 1.Google Scholar
  3. Inonü, E. and Wigner, E. P. (1952).Nuovo Cimento,IX, 705.Google Scholar
  4. Lanz, L., Lugiato, L. A. and Ramella, G. (1971).Physica s' Gravenhage,54, 94.Google Scholar
  5. Lanz, L., Lugiato, L. A., Ramella, G. and Sabbadini, A. (1973). The embedding of unstable non-relativistic particles into Galilean quantum field theories,International Journal of Theoretical Physics, Vol. 8, No. 6.Google Scholar
  6. Ludwig, G. (1967).Communications in Mathematical Physics,4, 331.Google Scholar
  7. Ludwig, G. (1970).Lecture Notes in Physics No. 4. Springer-Verlag, Berlin.Google Scholar
  8. Ludwig, G. (1972).Makroskopische Systeme und Quantenmechanik, Notes in Mathematical Physics, NMP5. Universität Marburg.Google Scholar
  9. Mackey, G. W. (1968).Induced Representations of Groups and Quantum Mechanics. W. A. Benjamin and Editore Boringhieri, New York and Torino.Google Scholar
  10. Prigogine, I., George, C. and Henin, F. (1969).Physica s' Gravenhage,45, 418.Google Scholar
  11. Schulman, L. S. (1970).Annals of Physics,59, 201.Google Scholar
  12. Von Neumann, J. (1955).Mathematical Foundations of Quantum Mechanics. Princeton University Press.Google Scholar
  13. For a more concise formulation, see Ludwig, G. (1954).Die Grundlagen der Quantenmechanik, p. 107 ff. Springer-Verlag, Berlin.Google Scholar
  14. Wightman, A. S. (1959).Supplemento del Nuovo Cimento,14, 81.Google Scholar
  15. Wigner, E. P. (1931).Gruppentheorie und Ihre Anwendung auf die Quantenmechanik der Atomspektren. Braunschweig.Google Scholar

Copyright information

© Plenum Publishing Company Limited 1973

Authors and Affiliations

  • L. Lanz
    • 1
    • 2
  • L. A. Lugiato
    • 1
    • 2
  • G. Ramella
    • 1
  1. 1.Istituto di Fisica dell'UniversitàMilanoItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di MilanoItaly

Personalised recommendations