Advertisement

Acta Neuropathologica

, Volume 16, Issue 4, pp 324–341 | Cite as

Zur Pathogenese der Isoniazid-Neuropathie

II. Phasenkontrast- und elektronenmikroskopische Untersuchungen am Rückenmark, an Spinalganglien und Muskelspindeln
  • J. M. Schröder
Originalarbeiten

Zusammenfassung

Entgegen anderslautender Angaben in der Literatur werden bei der INH-Neuropathie auch die sensorischen Nervenendigungen in den Muskelspindeln betroffen. Die Veränderungen bestehen in einem Verlust der synaptischen Vesikel, in Mitochondrienschwellungen und-Verdichtungserscheinungen, in terminalen Axonfragmentationen und Reaktionen der zugehörigen intrafusalen Muskelfasern.

Außerdem lassen sich schon in frühesten Stadium der INH-Neuropathie, am 4. Tag nach Beginn der INH-Applikation, Veränderungen in den lumbosacralen Spinalganglien und im Rückenmark nachweisen. Die Veränderungen in den Perikaryen gleichen denen bei der retrograden Zellveränderung weitgehend.

Über die Spezifität der Alterationen an den sensorischen Nervenendigungen ist vorest keine sichere Aussage möglich, da vergleichbare Untersuchungen über pathologisch veränderte Muskelspindeln, insbesondere nach der einfachen Durchschneidung des Nerven, bisher fehlen.

The pathogenesis of INH-neuropathy

II. Phase and electron microscopic studies of spinal cord, spinal ganglia and muscle spindles

Summary

In INH-neuropathy sensory nerve endings of distal muscle spindles may be severely altered. The changes are characterized by a disappearance of synaptic vesicles, mitochondrial swelling or condensation, fragmentation of axon terminals and reactions of the corresponding intrafusal muscle fibers.

Also, occasional alterations in lumbosacral spinal ganglia and spinal cord were seen occurring already in the initial stage of INH-neuropathy at the 4th day after the beginning of INH application. The perikaryal changes resemble those of the retrograde cell reaction.

Any specificness of the alterations seen in the sensory endings of muscle spindles cannot be ruled out at the present time since there are no comparable fine structural studies of pathological alterations in muscle spindles after simple nerve section or other nerve lesions.

Key-Words

Spinal Cord Spinal Ganglia Neuromuscular Spindles Mitochondria Isoniazid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Andres, K. H.: Untersuchungen über den Feinbau von Spinalganglienzellen. Z. Zellforsch.55, 1–48 (1961a).Google Scholar
  2. —: Untersuchungen über morphologische Veränderungen in Spinalganglien während der retrograden Degeneration. Z. Zellforsch.55, 49–79 (1961b).Google Scholar
  3. Barron, K. D., Doolin, P. F., Oldershaw, J. B.: Ultrastructural observations on retrograde atrophy of lateral geniculate body. 1. Neuronal alterations. J. Neuropath. exp. Neurol.26, 300–326 (1967).Google Scholar
  4. Bodian, D.: An electron microscopic study of the monkey spinal cord. Bull. Johns Hop. Hosp.114, 13–119 (1964).Google Scholar
  5. Cavanagh, J. B.: On the pattern of changes in peripheral nerves produced by isoniazid intoxication in rats. J. Neurol. Neurosurg. Psychiat.30, 26–33 (1967).Google Scholar
  6. Cervós-Navarro, J.: Elektronenmikroskopische Untersuchungen an Spinalganglien. I. Nervenzellen. Arch. Psychiat. Nervenkr.199, 643–662 (1959).Google Scholar
  7. —: Elektronenmikroskopische Untersuchungen an Spinalganglien. II. Satellitenzellen. Arch. Psychiat. Nervenkr.200, 267–283 (1960)Google Scholar
  8. Corvaja, N., Marinozzi, V., Pompeiano, O.: Muscle spindles in the lumbrical muscle of the adult cat. Arch. ital. Biol.107, 365–543 (1969).Google Scholar
  9. De Duve, C.: Functions of microbodies (peroxisomes). Abstr. Vth Meeting Amer. Soc. Cell Biol.27, 25A (1965).Google Scholar
  10. Dixon, J. S.: Changes in the fine structure of satellite cells surrounding chromatolytic neurons. Anat. Rec.163, 101–110 (1969).Google Scholar
  11. Ericsson, J. L. E., Trump, B. F., Weibel, J.: Electron microscopic studies of the proximal tubule of the rat kidney. II. Cytosegresomes and cytosomes: their relationship to each other and the lysosome concept. Lab. Invest.14, 1341–1365 (1965).Google Scholar
  12. Evans and Gray: zit. nach Gray. E. G. (1964).Google Scholar
  13. Goldblatt, P. J., Williams, G. M.: Some alterations in hepatic cytosome structure and acid phosphatase activity induced bydl-ethionine. Amer. J. Path.57, 253–271 (1969).Google Scholar
  14. Gray, E. G.: Tissue of the central nervous system. In: Electron microscopic anatomy (Ed. S. M. Kurtz), pp. 369–417. New York: Academic Press 1964.Google Scholar
  15. Gruner, J.-E.: La structure fine du fuseau neuromusculaire humain. Rev. neurol.104, 490–507 (1961).Google Scholar
  16. Hennig, G.: Die Nervenendigungen der Rattenspindel im elektronen-und phasenkontrast-mikroskopischen Bild. Z. Zellforsch.96, 275–294 (1969).Google Scholar
  17. Hildebrand, J., Joffrey, A., Coërs, C.: Myoneural changes in experimental isoniazid neuropathy. Arch. Neurol. (Chic.)19, 60–70 (1968).Google Scholar
  18. Holtzman, E., Novikoff, A. B., Villaverde, H.: Lysosomes and GERL in normal and chromatolytic neurons of the rat ganglion nodosum. J. Cell Biol.33, 419–435 (1967).Google Scholar
  19. Hudson, G., Hartmann, J. F.: Relation between dense bodies and mitochondria in motor neurones. Z. Zellforsch.54, 147–157 (1961).Google Scholar
  20. —, Lazarow, A., Hartmann, J. F.: A quantitative electron microscopic study of mitochondria in motor neurones following axonal section. Exp. Cell Res.24, 440–456 (1961).Google Scholar
  21. Hruban, Z., Rechcigl, M., Jr.: International review of cytology, Supplement I, Microbodies and related particles. Morphology, Biochemistry, and Physiology. G. H. Bourne and J. F. Danielli, ed. New York: Academic Press Inc. 1969.Google Scholar
  22. Karlsson, U., Andersson-Cedergren, E.: Motor myoneural junctions on frog intrafusal muscle fibers. J. Ultrastruct. Res.14, 191–211 (1966).Google Scholar
  23. ——, Ottoson, D.: Cellular organization of the frog muscle spindle as revealed by serial sections for electron microscopy. J. Ultrastruct. Res.14, 1–35 (1966).Google Scholar
  24. Katz, B.: The termination of the afferent nerve fibre in the muscle spindle of the frog. Phil. Trans. B243, 221–242 (1961).Google Scholar
  25. Landon, D. N.: Electronmicroscopy of muscle spindles. In: Symposium on control and innervation of skeletal muscle, ed. by B. L. Andrew, pp. 96–110. Edinburgh: Livingstone 1966.Google Scholar
  26. Leech, R. W.: Changes in satellite cells of rat dorsal root ganglia during central chromatolysis. An electron microscopic study. Neurology (Minneap.)17, 349–358 (1967).Google Scholar
  27. Mackey, E. A., Spiro, D., Wiener, J.: A study of chromatolysis in dorsal root ganglia at the cellular level. J. Neuropath. exp. Neurol.23, 508–526 (1964).Google Scholar
  28. Maunsbach, A. B.: Observations on the ultrastructure and acid phosphatase activity of the cytoplasmic bodies in rat kidney proximal tubule cells. J. Ultrastruct. Res.16, 197–238 (1966).Google Scholar
  29. Merrillees, N. C. R.: The fine structure of muscle spindles in the lumbrical muscles of the rat. J. biophys. biochem. Cytol.7, 725–741 (1960).Google Scholar
  30. Palay, S. L., Palade, G. E.: Fine structure of neurons. J. biophys. biochem. Cytol.1, 69–88 (1955).Google Scholar
  31. Pannese, E.: Observations on the morphology, submicroscopic structure and biological properties of satellite cells (S.C.) in sensory ganglia of mammals. Z. Zellforsch.52, 567–597 (1960).Google Scholar
  32. —: Investigations on the ultrastructural changes of spinal ganglion neurons in the course of axon regeneration and cell hypertrophy. I. Changes during axon regeneration. Z. Zellforsch.60, 711–740 (1963a).Google Scholar
  33. —: Investigations on the ultrastructural changes of the spinal ganglion neurons in the course of axon regeneration and cell hypertrophy. II. Changes during cell hypertrophy and comparison between the ultrastructure of nerve cells of the same type under different functional conditions. Z. Zellforsch.61, 561–586 (1963b).Google Scholar
  34. Pannese, E.: Number and structure of perisomatic satellite cells of spinal ganglia under normal conditions during axon regeneration and neuronal hypertrophy. Z. Zellforsch.63, 568–592 (1964).Google Scholar
  35. Prineas, J.: The pathogenesis of dying back polyneuropathies. Part I. An ultrastructural study of experimental triortho-cresyl phosphate intoxication in the cat. J. Neuropath. exp. Neurol.28, 571–597 (1969).Google Scholar
  36. —: The pathogenesis of dying back polyneuropathies. Part II. An ultrastructural study of experimental acrylamide intoxication in the cat. J. Neuropath. exp. Neurol.28, 598–621 (1969).Google Scholar
  37. Reger, J. F.: Studies of the fine structure of normal and denervated neuromuscular junction from mouse gastrocnemius. J. Ultrastruct. Res.2, 269–282 (1959).Google Scholar
  38. Rhodin, J.: Correlation of ultrastructural organization and function in normal and experimentally changed proximal convoluted tubule cells of the mouse kidney. Stockholm: Aktiebolaget Godvil 1954.Google Scholar
  39. Rosenbluth, J., Wissig, S. L.: The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J. Cell Biol.23, 307–325 (1964).Google Scholar
  40. Schlaepfer, W. W., Hager, H.: Ultrastructural studies of INH-induced neuropathy in rats. I. Early axonal changes. Amer J. Path.45, 209–220 (1964).Google Scholar
  41. Schröder, J. M.: Die Hyperneurotisation Büngnerscher Bänder bei der experimentellen Isoniazid-Neuropathie: Phasenkontrast-und elektronenmikroskopische Untersuchungen. Virchows Arch., Abt. B. Zellpath.1, 131–156 (1968).Google Scholar
  42. —: Die Feinstruktur markloser (Remakscher) Nervenfasern bei der Isoniazid-Neuropathie. Acta neuropath. (Berl.)15, 156–175 (1970a).Google Scholar
  43. —: Zur Pathogenese der Isoniazid-Neuropathie. I. Eine feinstrukturelle Differenzierung gegenüber der Wallerschen Degeneration. Acta neuropath. (Berl.)16, 301–323 (1970).Google Scholar
  44. Smith, K.: The fine structure of neurons of dorsal root ganglia after stimulating or cutting the sciatic nerve. J. comp. Neurol.116, 103–107 (1961).Google Scholar
  45. Terzakis, J. A.: The nucleolar channel system of the human endometrium. J. Cell Biol.27, 293–304 (1965).Google Scholar
  46. Van Nimwegen, D., Sheldon, H.: Early postmortem changes in cerebellar neurons of the rat. J. Ultrastruct. Res.14, 36–45 (1966).Google Scholar
  47. Wyburn, B. M.: The capsule of spinal ganglion cells. J. Anat. (Lond.)92, 528–533 (1958).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • J. M. Schröder
    • 1
    • 2
  1. 1.Neuropathologische AbteilungMax-Planck-Institut für HirnforschungFrankfurt a. M.Deutschland
  2. 2.Neurologisches Institut (Edinger-Institut) der Universität Frankfurt a. M.Frankfurt a. M.Deutschland

Personalised recommendations