Advertisement

Journal of comparative physiology

, Volume 125, Issue 2, pp 157–163 | Cite as

Effects of photoperiod, melatonin administration and thyroid block on spontaneous daily torpor and temperature regulation in the white-footed mouse,Peromyscus leucopus

  • G. Robert Lynch
  • Susan E. White
  • Ralph Grundel
  • Mark S. Berger
Article

Summary

Cold exposed (13°C) mice maintained on a short day photoperiod (9L:15D) became torpid 9 times more frequently than long day photoperiod (16L:8D) animals (Table 1). Mice on a short day photoperiod also exhibited a 26% increase in nesting behavior, a 9% decrease in food consumption and a 49% increase in norepinephrine induced thermogenesis (Table 2). No change in resting metabolism was observed. Similarily, chronic melatonin administration (subcutaneously implanted beeswax pellet containing 3.5 mg melatonin) elicited a 2.5 fold increase in spontaneous daily torpor relative to shamimplanted mice (Table 3). Mice treated with melatonin exhibited a 33% increase in nesting behavior and a slight decrease in food consumption. Although thyroid block (propyl-thiouracil) increased the incidence of daily torpor only slightly, it did effect an 11% decrease in resting metabolism, a 42% decrease in norepinephrine induced thermogenesis and a 5% decrease in food consumption. Thyroid block did not alter nesting behavior.

Keywords

Norepinephrine Melatonin Human Physiology Temperature Regulation Fold Increase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksiuk, M., Frohlinger, A.: Seasonal metabolic organization in the muskrat (Ondatra zibethica). I. Changes in growth, thyroid activity, brown adipose tissue, and organ weight in nature. Canad. J. Zool.49, 1143–1155 (1971)Google Scholar
  2. Barry, W.: Environmental effects on food hoarding in deermice (Peromyscus). J. Mammal.57, 731–745 (1976)Google Scholar
  3. Bauman, T.R., Anderson, R.R.: Thyroid activity of the ground squirrel (Citellus tridecemlineatus) using a cannula technique. Gen. Comp. Endocrinol.15, 369–373 (1970)Google Scholar
  4. Brück, K.: Nonshivering thermogenesis and brown adipose tissue in relation to age and their integration in the thermoregulatory system. In: Brown adipose tissue (ed. O. Lindberg), pp. 117–153. New York: Elsevier Press 1970Google Scholar
  5. Chaffee, R., Roberts, J.: Temperature acclimation in birds and mammals. Ann. Rev. Physiol.33, 155–197 (1971)Google Scholar
  6. Eleftheriou, B.E., Zarrow, M.X.: Seasonal variation in thyroid gland activity in deer mice. Proc. Soc. exp. Biol. Med.110, 128–131 (1962)Google Scholar
  7. Ellis, L., Reiter, R.: Endocrine role of the pineal gland. Amer. Zool.16, 1–101 (1976)Google Scholar
  8. Gaertner, R.A., Hart, J.S., Roy, O.Z.: Seasonal spontaneous torpor in the white-footed mouse,Peromyscus leucopus. Comp. Biochem. Physiol.45A, 169–181 (1973)Google Scholar
  9. Hart, J.S.: Rodents. In: Comparative physiology of thermoregulation, Vol. II (ed. G. Causey Whittow), pp. 1–149. New York: Academic Press 1971Google Scholar
  10. Harvey, W.R.: Least squares analysis of data with unequal subclass numbers. Publ. No. ARS-20-8. United States Dept. of Agriculture, Washington, D.C. (1960)Google Scholar
  11. Hayward, J., Lyman, C.P.: Nonshivering heat production during arousal from hibernation and evidence for the contribution of brown fat. In: Proc. III international symposium on natural mammalian hibernation (ed. K.C. Fisher), pp. 346–355. Edinburgh: Oliver and Boyd Press 1967Google Scholar
  12. Heldmaier, G.: Thermogenese der Mausohrfledermaus (Myotis myotis) beim Erwachen aus dem Winterschlaf. Z. vergl. Physiol.63, 59–84 (1969)Google Scholar
  13. Heldmaier, G., Hoffmann, K.: Melatonin stimulates growth of brown adipose tissue. Nature247, 224–225 (1974)Google Scholar
  14. Heroux, O.: Catecholamines, corticosterioids and thyroid hormones in nonshivering thermogenesis under different environmental conditions. In: Physiology and pathology of adaption mechanisms (ed. E. Bajusz), pp. 347–365. New York: Pergamon Press 1969Google Scholar
  15. Hill, R.W.: Daily torpor inPeromyscus leucopus on an adequate diet. Comp. Biochem. Physiol.51A, 413–423 (1975)Google Scholar
  16. Hoffman, R., Reiter, R.: Pineal gland: influence on gonads of male hamsters. Science148, 1609–1611 (1965)Google Scholar
  17. Hoffman, R., Zarrow, M.: Seasonal changes in the basophilic cells of the pituitary gland of the ground squirrel (Citellus tridecemlineatus). Anat. Rec.131, 727–734 (1958)Google Scholar
  18. Hsieh, A., Carlson, L.: Role of the thyroid in metabolic response to low temperature. Amer. J. Physiol.188, 40–44 (1957)Google Scholar
  19. Hudson, J.W.: Torpidity in mammals, In: Comparative physiology of thermoregulation, Vol. II (ed. G. Causey Whittow), pp. 98–158. New York: Academic Press 1973Google Scholar
  20. Hudson, J.W., Deavers, D.: Thyroid function and basal metabolism in the ground squirrelsAmmospermophilus leucurus andSpermophilus spp. Physiol. Zool.49, 425–444 (1976)Google Scholar
  21. Hudson, J.W., Wang, L.: Thyroid function in desert ground squirrels. In: Physiological systems in semiarid environments (ed. C. Hoff, M. Riedesel), pp. 17–35. Univ. New Mexico Press 1969Google Scholar
  22. Janský, L.: Nonshivering thermogenesis and its thermoregulatory significance. Biol. Rev.48, 85–132 (1973)Google Scholar
  23. Janský, L., Hart, J.S.: Participation of skeletal muscle and kidney during nonshivering thermogenesis in cold acclimated rats. Canad. J. Biochem. Physiol.41, 953–964 (1963)Google Scholar
  24. King, J., Maas, D., Weisman, R.: Geographic variation in nest size among species ofPeromyscus. Evolution18, 230–234 (1964)Google Scholar
  25. Lynch, G.R.: Effect of photoperiod and cold acclimation on nonshivering thermogenesis inPeromyscus leucopus. Amer. Zool.10, 308 (1970)Google Scholar
  26. Lynch, G.R., Epstein, A.L.: Melatonin induced changes in gonads, pelage, and thermogenic characters in the white footed mouse.Peromyscus leucopus. Comp. Biochem. Physiol.53C, 67–69 (1976)Google Scholar
  27. Lynch, G.R., Lynch, C.B., Dingle, H.: Photoperiodism and adaptive behavior in mice. Nature244, 46–47 (1973)Google Scholar
  28. Lynch, G.R., Vogt, F.D., Smith, H.R.: Seasonal study of spontaneous daily torpor in the white-footed mouse,Peromyscus leucopus. Physiol. Zool. (in press) (1978)Google Scholar
  29. Mejsmar, J., Janský, L.: Shivering and nonshivering thermogenesis in the bat (Myotis myotis) during arousal from hibernation. Canad. J. Physiol. Pharmacol.48, 102–106 (1970)Google Scholar
  30. Morhardt, J.: Body temperatures of white-footed mice (Peromyscus spp.) during daily torpor. Comp. Biochem. Physiol.33, 423–440 (1970)Google Scholar
  31. Morhardt, J.E., Hudson, J.W.: Daily torpor induced in white-footed mice (Peromyscus sp.) by starvation. Nature212, 1046–1047 (1966)Google Scholar
  32. Morrison, P.: Adaptation of small mammals to the arctic. Fed. Proc.23, 1202–1206 (1964)Google Scholar
  33. Mrovosky, N.: Hibernation and the hypothalamus. New York: Appleton Press 1971Google Scholar
  34. Neumann, R., Cade, T.J.: Photoperiodic influence on the hibernation of jumping mice. Ecology45, 382–384 (1964)Google Scholar
  35. Palmer, D., Riedesel, M.: Responses of whole-animal and isolated hearts of ground squirrels,Citellus lateralis, to melatonin. Comp. Biochem. Physiol.53C, 69–72 (1976)Google Scholar
  36. Pengelley, E., Asmundson, S.: Circannual rhythmicity in hibernating mammals. In: Circannual clocks (ed. E.T. Pengelley), pp. 95–161. New York: Academic Press 1974Google Scholar
  37. Popovic, V.: Endocrines in hibernation. Bull. Museum Comp. Zool.124, 105–129 (1960)Google Scholar
  38. Prosser, C.L.: Comparative animal physiology, p. 966. New York: Saunders 1973Google Scholar
  39. Quay, W.B.: Pireal chemistry in cellular and physiological mechanism, p. 430. Springfield, Illinois: Thomas Press 1974Google Scholar
  40. Rigaudiere, N.: Les variations saisonnières de metabolisme de base et de la thyroide chez les microtines. Arch. Sci. Physiol.23, 215–244 (1969)Google Scholar
  41. Rust, C.C., Meyer, R.K.: Hair color, molt and testes size in male, short-tailed weasels treated with melatonin. Science165, 921–922 (1969)Google Scholar
  42. Salter, W.T.: The control of thyroid activity. In: The Hormones, Vol. II (eds. G. Pincus, K.V. Thimann), pp. 301–349. New York: Academic Press 1950Google Scholar
  43. Sellers, E., You, S.: Role of thyroid in metabolic responses to a cold environment. Amer. J. Physiol.163, 80–91 (1950)Google Scholar
  44. Siegel, S.: Nonparametric statistics for the behavioral sciences. New York: McGraw-Hill 1956Google Scholar
  45. Tashima, L.S.: The effects of cold exposure and hibernation on thyroidal activity ofMesocricetus auratus. Gen. Comp. Endocrinol.5, 267–277 (1965)Google Scholar
  46. Wurtman, R., Axelrod, J., Kelly, D.: The pineal. New York: Academic Press 1968Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • G. Robert Lynch
    • 1
  • Susan E. White
    • 1
  • Ralph Grundel
    • 1
  • Mark S. Berger
    • 1
  1. 1.Department of BiologyWesleyan UniversityMiddletownUSA

Personalised recommendations