Solar Physics

, Volume 159, Issue 2, pp 399–402 | Cite as

On fast magnetosonic coronal pulsations

  • V. M. Nakariakov
  • B. Roberts
Solar Physics Letters


The linear properties of the fast magnetosonic modes of a coronal loop modelled as a smooth density inhomogeneity in a uniform magnetic field are compared with the case of a step function slab. It is shown that the group velocityCgof the modes, important in determining the structure of impulsively excited wave packets, possesses a minimum for a wide class of profile including the slab, with the exception of the Epstein profile for which the minimum inCgmoves out to infinity. Results for the simple step profile are thus of wider validity, and likely to be applicable to coronal loops.


Magnetic Field Wave Packet Step Function Wide Class Linear Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. J.: 1981,An Introduction to Optical Waveguides, J. Wiley and Sons, Chichester.Google Scholar
  2. Aschwanden, M. J.: 1987,Solar Phys. 111, 113.Google Scholar
  3. Aschwanden, M. J., Benz, A. O., and Montello, M. L.: 1994,Astrophys. J. 431, 432.Google Scholar
  4. Bray, R. J., Cram, L. E., Durrant, C. J., and Loughhead, R. E.: 1991,Plasma Loops in the Solar Corona, Cambridge University Press, Cambridge.Google Scholar
  5. Cally, P. S.: 1986,Solar Phys. 108, 183.Google Scholar
  6. Edwin, P. M.: 1991,Ann. Geophys. 9, 188.Google Scholar
  7. Edwin, P. M.: 1992,Ann. Geophys. 10, 631.Google Scholar
  8. Edwin, P. M. and Roberts, B.: 1982,Solar Phys. 76, 239.Google Scholar
  9. Edwin, P. M. and Roberts, B.: 1983,Solar Phys. 88, 179.Google Scholar
  10. Edwin, P. M. and Roberts, B.: 1988,Astron. Astrophys. 192, 343.Google Scholar
  11. Golub, L.: 1991, in P. Ulmschneider, E. R. Priest, and R. Rosner (eds.),Mechanisms of Chromospheric and Coronal Heating, Springer-Verlag, Berlin, p. 115.Google Scholar
  12. Klimchuk, J. A., Lemen, J. R., Feldman, U., Tsuneta, S., and Uchida, Y.: 1992,Publ. Astron. Soc. Japan 44, L181.Google Scholar
  13. Landau, L. and Lifshitz, E.: 1958,Quantum Mechanics, Pergamon Press, Oxford.Google Scholar
  14. Murawski, K. and Roberts, B.: 1993,Solar Phys. 144, 101.Google Scholar
  15. Murawski, K. and Roberts, B.: 1994,Solar Phys. 151, 305.Google Scholar
  16. Roberts, B.: 1981a,Solar Phys. 69, 27.Google Scholar
  17. Roberts, B.: 1981b,Solar Phys. 69, 39.Google Scholar
  18. Roberts, B., Edwin, P. M., and Benz, A. O.: 1983,Nature 305, 688.Google Scholar
  19. Roberts, B., Edwin, P. M., and Benz, A. O.: 1984,Astrophys. J. 279, 857.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • V. M. Nakariakov
    • 1
  • B. Roberts
    • 1
  1. 1.School of Mathematical and Computational SciencesUniversity of St. AndrewsSt. Andrews, FifeScotland

Personalised recommendations