Advertisement

Applied Physics B

, Volume 28, Issue 4, pp 373–381 | Cite as

Origin of laser-output noise of cataphoretic HeSe+ lasers

  • M. Neiger
  • H. -P. Popp
  • E. Schmidt
Contributed Papers

Abstract

We investigated noise and fluctuations of the output power of cataphoretic HeSe+ lasers in positive column plasma. Direct coupling of laser output power noise and fluctuations of the local population inversion was found. An investigation of the positive column plasma showed moving striations being responsible for the gain fluctuations. Whereas the local plasma properties are dominated by high frequency striations in the 100 kHz range, integrated quantities such as laser gain per pass are most strongly influenced by low-frequency waves with a continuous noise spectrum below 200 kHz. External modulation of the discharge voltage or current at a frequency near thehf striations reduces laser noise and increases laser output power.

PACS

42.55 42.80 52 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.T.Silfvast: Appl. Phys. Lett.13, 169 (1968)Google Scholar
  2. 2.
    W.T.Silfvast: Appl. Phys. Lett.17, 400 (1970)Google Scholar
  3. 3.
    C.C.Davis, T.A.King: In:Advances in Quantrum Electronics ed. by D.W.Goodwin (Academic Press, New York 1975)Google Scholar
  4. 4.
    D.C.Fromm, G.M.Neumann, E.M.Schmidt: Opt. Laser Technol.8, 68 (1976)Google Scholar
  5. 5.
    H.-P.Popp, E.Schmidt, M.Neiger, F.Pfeil: Opt. Laser Technol.13, 321 (1981)Google Scholar
  6. 6.
    Laser Focus. pp. 16–18 (Sept. 1976): “High-fidelity color negatives produced from slides with a 3-beam laser system”Google Scholar
  7. 7.
    H.-P.Popp, E.Schmidt: IEEE J. OE15, 840 (1979)Google Scholar
  8. 8.
    J.P.Goldsborough: Appl. Phys. Lett.15, 159 (1969)Google Scholar
  9. 9.
    T.P.Sosnowski: J. Appl. Phys.40, 5138 (1969)Google Scholar
  10. 10.
    T.Hsie, W.Knauer, U.Penning: Z. Naturforsch.32a, 1503 (1978)Google Scholar
  11. 11.
    M.Neiger, V.Nemec: Z. Naturforsch.34a, 260 (1979)Google Scholar
  12. 12.
    T.Suzuki, S.Teiri: Appl. Phys. Lett.31, 328 (1977)Google Scholar
  13. 13.
    A.J.Wallard, P.T.Woods: J. Phys. E (Sci. Instrum)7, 212 (1974)Google Scholar
  14. 14.
    D.Fromm, E.Schmidt: Z. Naturforsch.30a, 372 (1974)Google Scholar
  15. 15.
    K.G.Hernqvist: Appl. Phys. Lett.16, 464 (1971)Google Scholar
  16. 16.
    K.Wojaczek: Ann. Phys.3, 37 (1959)Google Scholar
  17. 17.
    L.Pekarek: Sov. Phys. Usp.11, 188 (1968)Google Scholar
  18. 18.
    P.A.Pavlov, V.E.Privalov: Sov. Phys. Tech. Phys.23, 775 (1978)Google Scholar
  19. 19.
    P.S.Lauda, N.A.Miskinova, Y.V.Ponomarey: Sov. Phys. Usp.23, 813 (1980)Google Scholar
  20. 20.
    A.Garscadden: InGaseous Electronics. Vol. I:Electrical Discharges (Academic Press, New York 1978)Google Scholar
  21. 21.
    W.W.Rigrod: J. Appl. Phys.36, 2487 (1965)Google Scholar
  22. 22.
    M.Neiger: Unpublished materialGoogle Scholar
  23. 23.
    J.Skala: Czech. J. Phys.23, 284 (1973)Google Scholar
  24. 24.
    M.Sato: Beitr. Plasma Phys.11, 445 (1971)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • M. Neiger
    • 1
  • H. -P. Popp
    • 1
  • E. Schmidt
    • 1
  1. 1.Lehrstuhl AEEORuhr UniversityBochumFed. Rep. Germany

Personalised recommendations