Advertisement

10750obiologia

, Volume 71, Issue 3, pp 267–276 | Cite as

Effectiveness of size frequency distributions in regulating intraspecific spatial overlap of stream insects

  • William P. Kovalak
Article
  • 23 Downloads

Abstract

Spatial niche breadth and overlap of size groups of four species of epilithic stream insects were studied to determine if broad size frequency distributions serve to reduce intraspecific competition for space. Mean niche overlap decreased with greater breadth of size frequency distributions for only one species (Baetis intercalaris) and did not vary in relation to population density. Similarly, the ratio of the probabilities of intergroup and intragroup encounter did not vary as a function of the breadth of size frequency distributions. Therefore, it was concluded that changes in size frequency distribution have a minimal effect on intraspecific competition for space among epilithic species. It was suggested that observed size frequency distributions may be more a function of extant environmental conditions (temperature and flow) than of previous or extant intraspecific competition.

Keywords

Benthos intraspecific competition niche breadth niche overlap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, J. E. 1973. Limnology of a small Malayan river, Sungai Gombak. Monogr. Biol. 22: 1–485.Google Scholar
  2. Corkum, L. D. 1978. The influence of density and behavioural type on the active entry of two mayfly species (Ephemeroptera) into the water column. Can. J. Zool. 56: 1202–1206.Google Scholar
  3. Cummins, K. W. 1975. Macroinvertebrates. pp. 170–198. In: River Ecology (B. A. Whitton, ed.) Univ. California Press, Berkeley.Google Scholar
  4. Décamps, H., Larrouy, G. & Trivellato, D. 1975. Approche 10750odynamique de la microdistribution d'invertébrés benthiques en eau courante. Ann. Limnol. 11: 79–100.CrossRefGoogle Scholar
  5. Hurlbert, S. H. 1978. The measurement of niche overlap and some relatives. Ecology 59: 67–77.CrossRefGoogle Scholar
  6. Hynes, H. B. N. 1961. The invertebrate fauna of a Welsh mountain stream. Arch. 10750obiol. 57: 344–388.Google Scholar
  7. Hynes, H. B. N. 1970. The Ecology of Running Waters. Univ. Toronto Press, Toronto.Google Scholar
  8. Hynes, J. D. 1975. Annual cycles of macro-invertebrates of a river in southern Ghana. Freshwat. Biol. 5: 71–83.CrossRefGoogle Scholar
  9. Ide, F. P. 1935. The effect of temperature on the distribution of the mayfly fauna of a stream. Publ. ont. Fish. Res. Lab. 50: 1–76.Google Scholar
  10. Kovalak, W. P. 1975. Diel changes in the distribution and abundance of benthic stream insects. Ph.D. dissertation. Univ. of Mich., Ann Arbor, Mich.Google Scholar
  11. Kovalak, W. P. 1976. Seasonal and diel changes in the positioning of Glossosoma nigrior Banks (Trichoptera: Glossosomatidae) on artifical substrates. Can. J. Zool. 54: 1585–1594CrossRefGoogle Scholar
  12. Kovalak, W. P. 1978a. Relationships between size of stream insects and current velocity. Can. J. Zool. 56: 178–186.CrossRefGoogle Scholar
  13. Kovalak, W. P. 1978b. On the feeding habits of Phasganophora capitata (Plecoptera: Perlidae). Great Lakes Entomol. 11: 45–49Google Scholar
  14. Kovalak, W. P. 1979. Day-night changes in stream benthos density in relation to current velocity. Arch. 10750obiol. 87: 1–18.Google Scholar
  15. Levins, R. 1968. Evolution in Changing Environments: Some Theoretical Explorations. Princeton Univ. Press, Princeton.Google Scholar
  16. Macan, T. T. 1963. Freshwater Ecology. J. Wiley & Sons, Inc., New York.Google Scholar
  17. Madsen, B. L. 1968. The distribution of nymphs of Brachyptera risi Mort. and Nemoura flexuosa Aub. (Plecoptera) in relation to oxygen. Oikos 19: 304–310.CrossRefGoogle Scholar
  18. McLay, C. 1968. A study of drift in the Kakanui River, New Zealand. Aust. J. Mar. Freshwat. Res. 19: 139–149CrossRefGoogle Scholar
  19. Moretti, G. P. & Gianotti, F. S. 1962. Der Einfluss der Strömung auf die Verteilung der Trichopteren Agapetus gr. fuscipes Curt. und Silo gr. nigricornis Pict. Schweiz. Z. 10750ol. 24: 467–484.CrossRefGoogle Scholar
  20. Müller, K. 1954. Investigations on the organic drift in North Swedish streams. Rep. Inst. Freshwat. Res. Drottningholm 35: 133–148.Google Scholar
  21. Roughgarden, J. 1972. Evolution of niche width. Amer. Nat. 106: 683–718.CrossRefGoogle Scholar
  22. Scott, D. 1958. Ecological studies on the Trichoptera of the River Dean, Cheshire. Arch. 10750obiol. 54: 340–392.Google Scholar
  23. Sheldon, A. L. 1969. Size relationships of Acroneuria californica (Perlidae, Plecoptera) and its prey. 10750obiologia 34: 85–94Google Scholar
  24. Siegfried, C. A. & Knight, A. W. 1976. Prey selection by a setipalpian stonefly nymph, Acroneuria (Calineuria) californica Banks (Plecoptera: Perlidae). Ecology 57: 603–608.CrossRefGoogle Scholar
  25. Tindall, M. J. & Kovalak, W. P. 1979. Food particle sizes consumed by larval Glossosoma nigrior (Trichoptera: Glossosomatidae). Great Lakes Entomol. 12: 105–108.Google Scholar
  26. Wallace, J. B. & Malas, D. 1976. The fine structure of capture nets of larval Philopotamidae (Trichoptera), with special emphasis on Dolophilodes distinctus. Can. J. Zool. 54: 1788–1802.CrossRefGoogle Scholar
  27. Walton, O. E., Jr., Reice, S. R. & Andrews, R. W. 1977. The effects of density, sediment particle size and velocity on drift of Acroneuria abnormis (Plecoptera). Oikos 28: 291–298.CrossRefGoogle Scholar
  28. Williams, N. E. & Hynes, H. B. N. 1973. Microdistribution and feeding of the net-spinning caddisflies (Trichoptera) of a Canadian stream. Oikos 24: 73–84CrossRefGoogle Scholar

Copyright information

© Dr. W. Junk b. v. Publishers 1980

Authors and Affiliations

  • William P. Kovalak
    • 1
  1. 1.Department of Natural SciencesUniversity of Michigan-DearbornDearborn

Personalised recommendations