Advertisement

Acta Neuropathologica

, Volume 2, Issue 5, pp 482–490 | Cite as

Glycogen changes in X-Irradiated rat brain

  • J. Miquel
  • I. Klatzo
  • D. B. Menzel
  • W. Haymaker
Original Investigations

Summary

X-irradiation of the head of rats resulted in the accumulation of histochemically demonstrable PAS-positive granules in the brain, which were identified as glucogen. The glycogen granules were confined predominantly to the neuroglial cells; they did not appear in neurons. The amount of glycogen granules was approximately proportional to the dose administered. Although such changes are known to occur under conditions of ionizing particle radiation, this is the first demonstration that they appear following X-irradiation.

Quantitative chemical analysis of the brains by the glucose oxydase method demonstrated an increase of glycogen of approximately 40%, 24 hours after exposure to 3.000 r.

The biochemical change responsible for the glycogen accumulation may consist in an impairment of the enzymes mediating the incorporation and release of glucose from glycogen.

Keywords

Public Health Glucose Chemical Analysis Quantitative Chemical Analysis Neuroglial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

Röntgenbestrahlung des Rattenkopfes hatte im Gehirn die Anhäufung von histochemisch nachweisbaren PAS-positiven Granula zur Folge, die sich als Glykogen erwiesen.

Die Glykogen-Granula fanden sich hauptsächlich in Gliazellen; sie traten nicht in Nervenzellen auf. Die Anzahl der Glykogen-Granula war ungefähr proportional der verabreichten Strahlendosis. Obgleich das Vorkommen derartiger Veränderungen unter den Bedingungen von ionisierenden Teilchenbestrahlungen bekannt ist, stellt dies den ersten Nachweis nach Röntgenbestrahlung dar.

Quantitative chemische Analysen des Gehirnes mittels der Glucose-Oxydase-Methode zeigten — 24 Std nach Applikation von 3.000 r — einen Anstieg des Glykogengehaltes um ca. 40%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, K.: Metabolism of glycogen in the skin and the effect of X-rays. J. invest. Derm.37, 381–395 (1961).Google Scholar
  2. Baxter, C. F., andE. Roberts: Gamma-aminobutyric acid and cerebral metabolism. InBrady, R. O., andD. B. Tower (eds.), Neurochemistry of Nucleotides and Aminoacids. p. 125–158. New York: Wiley 1959.Google Scholar
  3. Breckenridge, B. M., andE. J. Crawford: The quantitative histochemistry of the brain. Enzymes of the glycogen metabolism. J. Neurochem.7, 234–240 (1961).Google Scholar
  4. Carter, S. H., andW. E. Stone: Effect of convulsants on brain glycogen in the mouse. J. Neurochem.7, 16–19 (1961).Google Scholar
  5. Friede, R.: Die Bedeutung der Glia für den zentralen Kohlenhydratstoffwechsel. Zbl. allg. Path. path. Anat.92, 65–74 (1954).Google Scholar
  6. Giacobini, E.: A cytochemical study of the localization of carbonic anhydrase in the nervous system. J. Neurochem.9, 169–177 (1962).Google Scholar
  7. Hers, H. G.: Etudes enzymatiques sur fragments hépatiques; application à la classification des glycogénoses. Rev. int. Hépat.9, 35–55 (1959)Google Scholar
  8. Hydén, H.: A microchemical study of the relationship between glia and nerve cells. In:Tower, D. B., andJ. P. Schade (eds.), Structure and function of the cerebral cortex, p. 348–357. Amsterdam: Elsevier 1959Google Scholar
  9. Kerr, S. E.: The carbohydrate metabolism of the brain. Isolation of glycogen. J. biol. Chem.123, 443–449 (1938).Google Scholar
  10. Klatzo, I., andJ. Miquel: Observations on pinocytosis in nervous tissue. J. Neuropath. exp. Neurol.19, 475–487 (1960)Google Scholar
  11. —— andC. Tobias: Effects of alpha particle radiation on the rat brain, including vascular permeability and glycogen studies. J. Neuropath. exp. Neurol.20, 459–483 (1961).Google Scholar
  12. ———— andL. S. Wolfe: Observations on appearance of histochemically-demonstrable glycogen in the rat brain as effect of alpha-particle irradiation. Proc. Sympos. on Effects of Ionizing Radiation on the Nervous System, Vienna, 5–9 June 1961, p. 285–296. Vienna: International Atomic Energy Agency 1962.Google Scholar
  13. Oksche, A.: Histologische Untersuchungen über die Bedeutung des Ependyms, der Glia und der Plexus Chorioidei für den Kohlenhydratstoffwechsel des ZNS. Z. Zellforsch.48, 74–129 (1958).Google Scholar
  14. Pearse, A. G. E.: Histochemistry Boston: Little, Brown and Co. 1961.Google Scholar
  15. Saifer, A., andB. S. Gerstenfeld: The photometric microdetermination of blood glucose with glucose oxydase. J. Lab. clin. Med.51, 448–460 (1958).Google Scholar
  16. Scaife, J. F., andB. Hill: The uncoupling of oxydative phosphorilation by ionizing radiation. Canad. J. Biochem.40, 1025–1042 (1962).Google Scholar
  17. Shimizu, N., andY. Hamuro: Deposition of glycogen and changes in some enzymes in brain wounds. Nature (Lond.)181, 781–782 (1958).Google Scholar
  18. Wolfe, L. S., I. Klatzo, J. Miquel, C. Tobias, andW. Haymaker: Effect of alpha-particle irradiation on brain glycogen in the rat. J. Neurochem.9, 213–218 (1962).Google Scholar

Copyright information

© Springer-Verlag 1963

Authors and Affiliations

  • J. Miquel
    • 1
    • 2
    • 3
  • I. Klatzo
    • 1
    • 2
    • 3
  • D. B. Menzel
    • 1
    • 2
    • 3
  • W. Haymaker
    • 1
    • 2
    • 3
  1. 1.Ames Research CenterNational Aeronautics and Space AdministrationMoffett Field
  2. 2.National Institute of Neurological Diseases and BlindnessNational Institute of HealthBethesda
  3. 3.Dept. of Nutritional SciencesUniversity of CaliforniaBerkeley

Personalised recommendations