Skip to main content

Macroscopic quantum tunneling in a dc SQUID

Abstract

The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID whose dynamics can be described by a two-dimensional mechanical system with a dissipative environment. Based on the phenomenological model proposed by Caldeira and Leggett, the dissipative environment is represented by a set of harmonic oscillators coupling to the system. After integrating out the environmental degrees of freedom, an effective Euclidean action is found for the two-dimensional system. The action is used to provide the quantum tunneling rate formalism for the dc SQUID. Under certain conditions, the tunneling rate reduces to that of a single current-biased Josephson junction with an adjustable effective critical current.

This is a preview of subscription content, access via your institution.

References

  1. Y. M. Ivanchenko and L. A. Zil'berman,Sov. Phys. JETP 28, 1272 (1969); D. J. Scalapino, inTunneling Phenomena in Solids, E. Burstein and S. Lundqvist, eds. (Plenum Press, New York, 1969), p. 477; A. J. Leggett,Progr. Theor. Phys. Suppl. 69, 80 (1980).

    Google Scholar 

  2. A. O. Caldeira and A. J. Leggett,Ann. Phys. (N.Y.)149, 374 (1983);153, 445(E) (1984).

    Google Scholar 

  3. A. J. Leggett, inProceeding NATO ASI on Percolation, Localization and Superconductivity, Les Arcs, 1983, A. M. Goldman and S. A. Wolf, Eds. (Plenum Press, New York, 1984), p. 1.

  4. V. Ambegaokar, inProceedings NATO ASI on Percolation, Localization and Superconductivity, Les Arcs, 1983, A. M. Goldman and S. A. Wolf, eds. (Plenum Press, New York, 1984), p. 43; A. I. Larkin and Y. N. Ovchinnikov,Phys. Rev. B 28, 6281 (1983).

    Google Scholar 

  5. A. I. Larkin and Y. N. Ovchinnikov,Pis'ma Zh. Eksp. Teor. Fiz. 37, 322 (1983) [JETP Lett. 37, 382 (1983)];Zh. Eksp. Teor. Fiz. 86, 719 (1984) [Sov. Phys. JETP 59, 420 (1984)].

    Google Scholar 

  6. H. Grabert, U. Weiss, and P. Hanggi,Phys. Rev. Lett. 52, 2193 (1984); H. Grabert and U. Weiss,Z. Phys. B 56, 171 (1984).

    Google Scholar 

  7. L. D. Chang and S. Chakravarty,Phys. Rev. B 29, 130 (1984);30, 1566(E) (1984); H. Grabert, P. Olschowsk, and U. Weiss,Phys. Rev. B 32, 3348 (1985); D. Waxman and A. J. Leggett,Phys. Rev. B 32, 4450 (1985).

    Google Scholar 

  8. A. J. Leggett, inSixth International Conference on Noise in Physics System, P. H. E. Meijer, R. D. Mountain, and R. J. Soulen, Jr., eds. (NBS Special Publication 614, 1981), p. 355.

  9. R. deBruyn Ouboter, inProceedings of International Symposium on Foundations of Quantum Mechanics, S. Kamefuchiet al., eds. (Tokyo, 1983), p. 83, and references therein.

  10. S. Washburn, R. A. Webb, R. F. Voss, and S. M. Faris,Phys. Rev. Lett. 54, 2717 (1985).

    Google Scholar 

  11. D. B. Schwartz, B. San, C. N. Archie, and J. E. Lukens,Phys. Rev. Lett. 55, 1547 (1985).

    Google Scholar 

  12. M. H. Devoret, J. M. Martinis, and J. Clarke,Phys. Rev. Lett. 55, 1908 (1985).

    Google Scholar 

  13. C. D. Tesche and J. Clarke,J. Low Temp. Phys. 29, 301 (1977); C. D. Tesche,J. Low Temp. Phys. 44, 119 (1981).

    Google Scholar 

  14. A. J. Leggett,Phys. Rev. B 30, 1208 (1984).

    Google Scholar 

  15. J. S. Langer,Ann. Phys. (N.Y.)41, 108 (1967); S. Coleman,Phys. Rev. D 15, 2927 (1977); inThe Ways of Subnuclear Physics, D. Zichichi, ed. (Plenum Press, New York, 1979).

    Google Scholar 

  16. R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965); R. P. Feynman,Statistical Mechanics (New York, 1972) Chapter 3.

    Google Scholar 

  17. E. Ben-Jacob, D. J. Bergman, Y. Imry, B. J. Matkowsky, and Z. Schuss,J. Appl. Phys. 54, 6533 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, YC. Macroscopic quantum tunneling in a dc SQUID. J Low Temp Phys 65, 133–147 (1986). https://doi.org/10.1007/BF00685404

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00685404

Keywords

  • Rate Formalism
  • Mechanical System
  • Harmonic Oscillator
  • Phenomenological Model
  • Critical Current