Journal of Low Temperature Physics

, Volume 65, Issue 1–2, pp 133–147 | Cite as

Macroscopic quantum tunneling in a dc SQUID

  • Yong-Cong Chen
Article

Abstract

The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID whose dynamics can be described by a two-dimensional mechanical system with a dissipative environment. Based on the phenomenological model proposed by Caldeira and Leggett, the dissipative environment is represented by a set of harmonic oscillators coupling to the system. After integrating out the environmental degrees of freedom, an effective Euclidean action is found for the two-dimensional system. The action is used to provide the quantum tunneling rate formalism for the dc SQUID. Under certain conditions, the tunneling rate reduces to that of a single current-biased Josephson junction with an adjustable effective critical current.

Keywords

Rate Formalism Mechanical System Harmonic Oscillator Phenomenological Model Critical Current 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. M. Ivanchenko and L. A. Zil'berman,Sov. Phys. JETP 28, 1272 (1969); D. J. Scalapino, inTunneling Phenomena in Solids, E. Burstein and S. Lundqvist, eds. (Plenum Press, New York, 1969), p. 477; A. J. Leggett,Progr. Theor. Phys. Suppl. 69, 80 (1980).Google Scholar
  2. 2.
    A. O. Caldeira and A. J. Leggett,Ann. Phys. (N.Y.)149, 374 (1983);153, 445(E) (1984).Google Scholar
  3. 3.
    A. J. Leggett, inProceeding NATO ASI on Percolation, Localization and Superconductivity, Les Arcs, 1983, A. M. Goldman and S. A. Wolf, Eds. (Plenum Press, New York, 1984), p. 1.Google Scholar
  4. 4.
    V. Ambegaokar, inProceedings NATO ASI on Percolation, Localization and Superconductivity, Les Arcs, 1983, A. M. Goldman and S. A. Wolf, eds. (Plenum Press, New York, 1984), p. 43; A. I. Larkin and Y. N. Ovchinnikov,Phys. Rev. B 28, 6281 (1983).Google Scholar
  5. 5.
    A. I. Larkin and Y. N. Ovchinnikov,Pis'ma Zh. Eksp. Teor. Fiz. 37, 322 (1983) [JETP Lett. 37, 382 (1983)];Zh. Eksp. Teor. Fiz. 86, 719 (1984) [Sov. Phys. JETP 59, 420 (1984)].Google Scholar
  6. 6.
    H. Grabert, U. Weiss, and P. Hanggi,Phys. Rev. Lett. 52, 2193 (1984); H. Grabert and U. Weiss,Z. Phys. B 56, 171 (1984).Google Scholar
  7. 7.
    L. D. Chang and S. Chakravarty,Phys. Rev. B 29, 130 (1984);30, 1566(E) (1984); H. Grabert, P. Olschowsk, and U. Weiss,Phys. Rev. B 32, 3348 (1985); D. Waxman and A. J. Leggett,Phys. Rev. B 32, 4450 (1985).Google Scholar
  8. 8.
    A. J. Leggett, inSixth International Conference on Noise in Physics System, P. H. E. Meijer, R. D. Mountain, and R. J. Soulen, Jr., eds. (NBS Special Publication 614, 1981), p. 355.Google Scholar
  9. 9.
    R. deBruyn Ouboter, inProceedings of International Symposium on Foundations of Quantum Mechanics, S. Kamefuchiet al., eds. (Tokyo, 1983), p. 83, and references therein.Google Scholar
  10. 10.
    S. Washburn, R. A. Webb, R. F. Voss, and S. M. Faris,Phys. Rev. Lett. 54, 2717 (1985).Google Scholar
  11. 11.
    D. B. Schwartz, B. San, C. N. Archie, and J. E. Lukens,Phys. Rev. Lett. 55, 1547 (1985).Google Scholar
  12. 12.
    M. H. Devoret, J. M. Martinis, and J. Clarke,Phys. Rev. Lett. 55, 1908 (1985).Google Scholar
  13. 13.
    C. D. Tesche and J. Clarke,J. Low Temp. Phys. 29, 301 (1977); C. D. Tesche,J. Low Temp. Phys. 44, 119 (1981).Google Scholar
  14. 14.
    A. J. Leggett,Phys. Rev. B 30, 1208 (1984).Google Scholar
  15. 15.
    J. S. Langer,Ann. Phys. (N.Y.)41, 108 (1967); S. Coleman,Phys. Rev. D 15, 2927 (1977); inThe Ways of Subnuclear Physics, D. Zichichi, ed. (Plenum Press, New York, 1979).Google Scholar
  16. 16.
    R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965); R. P. Feynman,Statistical Mechanics (New York, 1972) Chapter 3.Google Scholar
  17. 17.
    E. Ben-Jacob, D. J. Bergman, Y. Imry, B. J. Matkowsky, and Z. Schuss,J. Appl. Phys. 54, 6533 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • Yong-Cong Chen
    • 1
  1. 1.Loomis Laboratory of Physics, Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbana

Personalised recommendations