Acta Neuropathologica

, Volume 60, Issue 1–2, pp 92–98 | Cite as

Localization of exogenous silver in brain and spinal cord of silver exposed rats

  • J. Rungby
  • G. Danscher
Original Works


Exogenous silver in brain and spinal cord sections from rats treated with Protargol, silver lactate or silver nitrate was visualized by physical development. The silver penetrated the blood-brain barrier and accumulated in neurones and glia. The distribution of silver in the CNS was heterogenous. Even with low doses and short survival periods, silver was found to accumulate in large motoneurones in the brain stem and spinal cord and neurones in the cerebellar nuclei. Silver was only found in di- and telencephalic structures after extensive exposure.

Silver distribution following oral silver lactate and silver nitrate treatment differed in that silver nitrate resulted in a relatively high content of silver in glia whereas deposition occurred preferentially in neurones following silver lactate treatment.

Electron-microscopical studies showed that silver was located intracellularly in the lysosomes and extracellularly in basement membranes and elastic fibres of the vessels.

Key words

Silver deposits CNS Neurones Glia Lysosomes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaseth J, Olsen A, Halse J, Hovig T (1981) Argyria-tissue deposition of silver as selenide. Scand J Clin Lab Invest 41:247:251Google Scholar
  2. Burstone MS (1958) Histochemical demonstration of acid phosphatases with naphtol Ag-phosphates. J Natl Cancer Inst 20:601Google Scholar
  3. Danscher G (1981a) Histochemical demonstration of heavy metals. Histochemistry 71:1–16Google Scholar
  4. Danscher G (1981b) Localization of gold in biological tissue. Histochemistry 71:81–88Google Scholar
  5. Danscher G (1981c) Light and electron microscopic localization of silver in biological tissue. Histochemistry 71:177–186Google Scholar
  6. Danscher G (1982a) Silver used as a marker of retrograde axonal transport. Neurosci Lett [Suppl] 10:129Google Scholar
  7. Danscher G (1982b) Exogenous selenium in the brain. A histochemical technique for light and electron microscopical localization of catalytic selenium bonds. Histochemistry 76:281–293Google Scholar
  8. Danscher G, Schrøder HD (1979) Histochemical demonstration of mercury-induced changes in rat neurons. Histochemistry 60: 1–7Google Scholar
  9. Dempsey EW, Wislocki GB (1955) An electron-microscopic study of the blood-brain barrier in the rat, employing silver nitrate as a vital stain. J Biophys Biochem Cytol 1:245–256Google Scholar
  10. Dreisbach RH (1974) Handbook of poisoning, 8th edn. Lange, Los Altos, CAGoogle Scholar
  11. Franken E, Langhof H (1964) Argyrosis universalis durch Targesin-Rollkuren. Med Klin 27:1094–1096Google Scholar
  12. Furchner JE, Richmond CR, Drake GA (1968) Comparative metabolism of radionucleides in mammals. IV. Retention of silver-110 m in the mouse, rat, monkey and dog. Health Phys 15: 505–514Google Scholar
  13. Herzog F, Roscher A (1921) Zur Klinik und Pathogenese der Kollargolintoxikation beim Menschen. Virchows Arch [Pathol Anat] 236:361–379Google Scholar
  14. Hill WR, Pillsbury DM (1939) Argyria, the pharmacology of silver. Williams and Wilkins, BaltimoreGoogle Scholar
  15. Jensen SF (1962) Argyrosis of conjunctiva in studio photographer. Acta Ophthalmol 40:544–547Google Scholar
  16. Lorente de Nó R (1934) Studies on the structure of the cerebral cortex II. J Psychol Neurol (Leipzig) 46:113–177Google Scholar
  17. Newton D, Holmes A (1966) A case of accidental inhalation of zinc 65 and silver 110 m. Radiat Res 29:403–412Google Scholar
  18. Peele TL (1977) The neuroanatomic basis for clinical neurology. 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  19. Phalen RF, Morrow PE (1973) Experimental inhalation of metallic silver. Health Phys 24:509–518Google Scholar
  20. Reinhardt G, Geldmacher-v. Mallinckrodt M, Kittel H, Opitz O (1971) Akute tödliche Vergiftung mit Silbernitrat als Folge eines Abtreibungsversuches. Arch Kriminol 148:69–78Google Scholar
  21. Roberts WJ (1935) A new procedure for the detection of gold in animal tissues. Proc R Acad Sci (Amsterdam) 38:540–544Google Scholar
  22. Rosenman KD, Moss A, Kon S (1979) Argyria: Clinical implications of exposure of silver nitrate and silver oxide. J Occup Med 21:430–435Google Scholar
  23. Scott KG, Hamilton JG (1950) The metabolism of silver in the rat with radio-silver used as an indicator. Univ Calif Publ Pharmacol 2:241–262Google Scholar
  24. Scott T, Norman PM (1980) Silver deposition in arteriolar basal laminae in the cerebral cortex of argyric rats. Acta Neuropathol (Berl) 52:243–246Google Scholar
  25. Scott WL, Jr (1967) Silver uptake in brains of chronically gammairradiated rats: A study by neutron activation analysis. Radiat Res 31:522–528Google Scholar
  26. Timm F (1932) Zellmikrochemie der Schwermetallgifte. Thesis, LeipzigGoogle Scholar
  27. Timm F (1958) Zur Histochemie der Schwermetalle. Das Sulfid-Silber-Verfahren. Dtsch Z Gesamte Gerichtl Med 46:706–711Google Scholar
  28. Timm F (1962) Der histochemische Nachweis der Sublimatvergiftung. Beitr Gerichtl Med 21:195–197Google Scholar
  29. Walker F (1972) Basement-membrane turnover in man. J Pathol 107:123–126Google Scholar
  30. Westergaard E, Brightman MW (1973) Transport of proteins across normal cerebral arterioles. J Comp Neurol 152:17–44Google Scholar
  31. Wislocki GB, Leduc EH (1952) Vital staining of the haematoencephalic barrier by silver nitrate and trypan blue, and cytological comparisons of the neurohypophysis, pineal body, area postrema, intercolumnar tubercle and supraoptic crest. J. Comp Neurol 96:371–413Google Scholar
  32. Zeiger K (1938) Physikochemische Grundlagen der histologischen Methodik. Wiss Forsch-Ber 48:55–105Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. Rungby
    • 1
  • G. Danscher
    • 1
  1. 1.Institute of Anatomy BUniversity of AarhusAarhus CDenmark

Personalised recommendations