Acta Neuropathologica

, Volume 25, Issue 3, pp 207–219 | Cite as

An electron microscopic study of Aujeszky's disease

  • R. M. McCracken
  • C. Dow
Original Investigations


Sixteen calves were killed at intervals during the course of the disease from 48 h onwards after subcutaneous infection with Aujeszky's disease virus. Ultrastructural changes were evident in the spinal ganglia from 84 h post-inoculation and the intercostal nerves from 96 h post-inoculation. The cytopathic changes in the spinal ganglia consisted of neuronal degeneration, neuronophagia, Schwann cell degeneration and cellular infiltration. The neuronophagic nodule was invariably contained within an intact sheath of satellite cells. Changes in the intercostal nerves were less dramatic but cellular infiltration was frequently seen and occasional Schwann cells were degenerate. In the terminal stages of the disease demyelination was rarely observed. In the ganglion virus was invariably seen in degenerating neurons and occasionally in Schwann cells and monocytes. Satellite cells were rarely infected even when ensheathing an infected neuron. Extra-cellular virus was not observed in ganglia or nerves. Schwann cells and monocytes in the nerves were occasionally infected. Virus particles were seen in the axoplasm both in the ganglion and in the entire length of the nerve. The particles in the axoplasm varied in morphology; thus unenveloped and enveloped particles, and particles in the process of acquiring an envelope were recognised. It was concluded that the neural pathway of Aujeszky's disease virus is probablyvia the axoplasm.

Key words

Aujeszky's Disease Inoculation Virus Particles Electron Microscopy Neuronal Degeneration Demyelination Axoplasmic Transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baringer, J. R., Griffith, J. F.: Experimental herpes simplex encephalitis; early neuropathologic changes. J. Neuropath. exp. Neurol.29, 89–104 (1970).Google Scholar
  2. Baskerville, A.: Ultrastructural changes in the pulmonary airways of pigs infected with a strain of Aujeszky's disease virus. Res. vet. Sci.13, 127–132 (1972).Google Scholar
  3. Becker, C.-H.: Die Multiplikation des Aujeszkyschen Virus in den Spinalganglien des Kaninchens. Arch. exp. Vet.-Med.22, 363–381 (1968).Google Scholar
  4. Becker, C.-H., Bergmann, V.: Nachweis des Herpes suis — Virus in den Nervenzellen intramuskular infizierter Kaninchen. Acta biol. med. germ,17, 829–830 (1966).Google Scholar
  5. Hill, T. J., Field, H. J., Roome, A. P. C.: Intra-axonal location of herpes simplex virus particles. J. gen. Virol.15, 253–255 (1972).Google Scholar
  6. Hofer, H. O.: The phenomenon of neurosecretion. In: The structure and function of nervous tissue, Vol. 1, pp. 461–517. G. H. Bourne, ed. New York-London: Acad. Press 1968.Google Scholar
  7. Hurst, E. W.: Studies on pseudorabies (Infectious bulbar paralysis, Mad Itch) I. Histology of the disease with a note on the symptomatology. J. exp. Med.58, 415–433 (1933).Google Scholar
  8. Johnson, R. T., Mims, C. A.: Pathogenesis of viral infections of the nervous system. New Engl. J. Med.278, 23–30, 84–92 (1968).Google Scholar
  9. Kristensson, K.: Morphological studies of the neural spread of herpes simplex virus to the central nervous system. Acta neuropath (Berl.)16, 54–63 (1970a).Google Scholar
  10. Kristensson, K.: Transport of fluorescent protein tracer in peripheral nerves. Acta neuropath. (Berl.)16, 293–300 (1970b).Google Scholar
  11. Kristensson, K., Enerback, L., Sourander, P.: Histochemical and ultrastructural properties of the classical inclusion body in neurons infected with herpes simplex virus. Acta path. microbiol. scand., Sect. A78, 595–604 (1970).Google Scholar
  12. Kristensson, K., Haltia, M.: Cytochemical and ultrastructural studies of chromatolysis in neurones infected with herpes simplex virus. Virchows Arch., Abt. B Zellpath.4, 335–344 (1970).Google Scholar
  13. Kristensson, K., Lycke, E., Sjostrand, J.: Spread of herpes simplex virus in peripheral nerves. Acta neuropath. (Berl.)17, 44–53 (1971).Google Scholar
  14. Kristensson, K., Olsson, Y.: Uptake and retrograde axonal transport of peroxidase in hypoglossal neurones. Acta neuropath. (Berl.)19, 1–9 (1971a).Google Scholar
  15. Kristensson, K., Olsson, Y.: The perineurium as a diffusion barrier to protein tracers; differences between mature and immature animals. Acta neuropath. (Berl.)17, 127–138 (1971b).Google Scholar
  16. Kuz'minov, P. I.: Topograficheskaya anatomiya bokavoi gudnoi stenki u krupnogo rogatogo skota v vozraste ot 8 do 18 mesyatsev. Trud. Mosk. Vet. Akad.8, 105–124 (1953).Google Scholar
  17. Lampert, P. W.: A comparative electron microscopic study of reactive, degenerating, regenerating and dystrophic axons. J. Neuropath. exp. Neurol.26, 345–368 (1967).Google Scholar
  18. Lasek, J.: Bidirectional transport of radioactivity labelled axoplasmic components. Nature (Lond.)216, 1212–1214 (1967).Google Scholar
  19. Lasek, R. J.: Axoplasmic transport in cat dorsal root ganglion cells; as studied with (3H)l-leucine. Brain Res.7, 360–370 (1968).Google Scholar
  20. McCracken, R. M.: Studies of the pathogenesis of Aujeszky's disease in calves. Ph D. Thesis, Queen's University of Belfast, 1972.Google Scholar
  21. McCracken, R. M., Clarke, J. K.: A thin-section study of the morphogenesis of Aujeszky's disease virus in synchronously infected cell cultures. Arch. ges. Virusforsch.34, 189–210 (1971).Google Scholar
  22. McEwen, B. S., Grafstein, B.: Fast and slow components in axonal transport of protein. J. Cell Biol.38, 494–508 (1968).Google Scholar
  23. McFerran, J. B., Dow, C.: Virus studies on experimental Aujeszky's disease in calves. J. comp. Path.74, 173–179 (1964).Google Scholar
  24. Mackey, E. A., Spiro, D., Weiner, J.: A study of chromatolysis in dorsal root ganglia at the cellular level. J. Neuropath. exp. Neurol.23, 508–526 (1964).Google Scholar
  25. Ochs, S., Sabri, J. I., Johnson, J.: Fast transport system of materials in mammalian nerves. Science163, 686–687 (1969).Google Scholar
  26. Pannese, E.: Investigations on the ultrastructural changes of the spinal ganglion neurons in the course of axon regeneration and cell hypertrophy; I. Changes during axon regeneration. Z. Zellforsch.60, 711–740 (1963).Google Scholar
  27. Rajcani, J., Conen, P. E.: Observations on neural spread of herpes simplex virus in suckling mice. An electron microscopic study. Acta virol. (Praha)16, 31–40 (1972).Google Scholar
  28. Sabin, A. B.: The nature and rate of centripetal progression of certain neurotropic viruses along peripheral nerves. Amer. J. Path.13, 615–617 (1937).Google Scholar
  29. Shantha, T. R., Bourne, G. H.: The perineural epithelium — a new concept. In: The structure and function of nervous tissue, Vol. 1, pp. 379–459. Edited by G. H. Bourne New York-London: Acad. Press 1968.Google Scholar
  30. Steer, J. C., Horney, F. D.: Evidence for passage of cerebrospinal fluid along spinal nerves. Canad. med. Ass. J.98, 71–74 (1968).Google Scholar
  31. Watson, W. E.: Centripetal passage of labelled molecules along mammalian motor axons. J. Physiol. (Lond.)196, 122–123 (1968).Google Scholar
  32. Weiss, P., Wang, H., Taylor, A. C., Edds, M. V.: Proximo-distal fluid convection in the endoneurial spaces of peripheral nerves demonstrated by colored and radioactive (isotope) tracers. Amer. J. Physiol.143, 521–540 (1945).Google Scholar
  33. Wright, G. P.: Nerve trunks as pathways in infection. Proc. roy. Soc. Med.46, 319–330 (1953).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • R. M. McCracken
    • 1
  • C. Dow
    • 1
  1. 1.Veterinary Research LaboratoriesBelfastNothern Ireland

Personalised recommendations