Acta Neuropathologica

, Volume 36, Issue 1, pp 21–30 | Cite as

Status spongiosus of rat central nervous system induced by Actinomycin D

  • N. Rizzuto
  • P. L. Gambetti
Original Investigations


The effect on central myelin of Actinomycin D, an RNA — and, secondarily, a protein-synthesis inhibitor, has been studied by light and electron microscopy. The intracranial injection of this drug produced an extensivestatus spongiosus of the white matter in the cerebrum, cerebellum, brain stem and optic nerve within 48 h.

The status spongiosus was due to vacuole formation within the myelin sheath and to enlargement of the extracellular space. Three types of vacuoles were observed: (a) the most common varieties formed between the inner tongue and the remainder of the myelin sheath; (b) a second variety formed by enlargement of the periaxonal space with separation of the axon from its myelin sheath, and (c) a less common type of vacuolization was due to splitting of the myelin lamellae at the interperiod line to form large intramyelinic vacuoles. Myelinic vacuoles were preceded by nuclear and cytoplasmic changes in oligodendrocytes, which included nucleolar segregation, disaggregation, and diminution in number of ribosomes. These changes were similar to those previously reported in a variety of cells exposed to Actinomycin D. It is suggested that myelin vacuoles result secondarily from the Actinomycin D inhibitory effect on oligodendroglial RNA — and protein-synthesis, rather than from a direct effect of this drug on the myelin sheath.

Key words

Status spongiosus Intramyelinic oedema Actinomycin D 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adachi, M., Wallace, B. T., Schneck, L., Volk, B. V.: Fine structure of spongy degeneration of the central nervous system (Van Bogaert-Bertrand type). J. Neuropath. exp. Neurol.25 598–616 (1966)Google Scholar
  2. Aleu, F. P., Katzman, R., Terry, R. D.: Fine structure and electrolyte analysis of cerebral oedema induced by alkyltin intoxication. J. Neuropath. exp. Neurol.22, 403–414 (1963)Google Scholar
  3. Appel, S. H.: Turnover of brain Messanger RNA. Nature (Lond.)213, 1253–1254 (1967)Google Scholar
  4. Autilio-Gambetti, L., Gambetti, P. L., Shafer, B.: RNA and axonal flow. Biochemical and autoradiographic study in the rabbit optic system. Brain Res.53, 387–398 (1973)Google Scholar
  5. Barondes, S. H., Cohen, H. D.: Delayed and sustained effect of acetoxycycloheximide on memory in mice. Proc. nat. Acad. Sci. (Wash.)58, 157–164 (1967)Google Scholar
  6. Barondes, S. H., Jarvik, M. E.: The influence of Actinomycin D on brain RNA synthesis and on memory. J. Neurochem.11, 187–195 (1964)Google Scholar
  7. Blakemore, W. F.: Observations on oligodendrocyte degeneration, the resolution of status spongiosus and remyelination in cuprizone intoxication in mice. J. Neurocytol.1, 416–426 (1972)Google Scholar
  8. Blakemore, W. F., Palmer, A. C., Noel, P. R. B.: Ultrastructural changes in isoniazid-induced brain edema in the dog. J. Neurocytol.1, 263–278 (1972)Google Scholar
  9. Blank, W. F., Jr., Barlett-Bunge, M., Bunge, R. P.: The sensitivity of the myelin sheath, particularly the Schwann cell-axolemmal junction, to lowered calcium levels in cultured sensory ganglia. Brain Res.67, 503–518 (1974)Google Scholar
  10. Bunge, R. P.: Glial cells and the central myelin sheath. Physiol. Rev.48, 197–251 (1968)Google Scholar
  11. Flexner, L. B., Flexner, J. B., Roberts, R. B., De La Haba, G.: Loss of recent memory in mice as related to regional inhibition of cerebral protein synthesis. Proc. nat. Acad. Sci. (Wash.)52, 1165–1169 (1964)Google Scholar
  12. Flickinger, C. J.: The fine structure of the nucleoli of normal and Actinomycin D-treated Amoeba Proteus. J. Ultrastruct. Res.23, 260–271 (1968)Google Scholar
  13. Gaitonde, M. K., Martenson, R. E.: Metabolism of highly basic protein of rat brain during postnatal development. J. Neurochem.17, 551–563 (1970)Google Scholar
  14. Gambetti, P. L., Gonatas, N. K., Flexner, L. B.: Fine structure of puromycin-induced changes in mouse enthorhinal cortex. J. Cell Biol.36, 379–390 (1968)Google Scholar
  15. Gambetti, P. L., Gonatas, N. K., Flexner, L. B.: Puromycin: Action on neuronal mitochondria. Science161, 900–902 (1968)Google Scholar
  16. Gambetti, P. L., Mellman, W. J., Gonatas, N. K.: Familial spongy degeneration of the central nervous system (Van Bogaert-Bertrand type). An ultrastructural study. Acta neuropath. (Berl.)12, 103–115 (1969)Google Scholar
  17. Hirano, A., Dembitzer, H. M.: A structural analysis of the myelin sheath in the central nervous system. J. Cell Biol.34, 555–567 (1967)Google Scholar
  18. Koenig, H.: Experimental myelopathy induced with pyrimidine analogue. Arch. Neurol. (Chic.)2, 463–475 (1960)Google Scholar
  19. Koenig, H.: An autoradiographic study of nuclei acid and protein turnover in the mammalian neuraxis. J. biophys. biochem. Cytol.4, 785–792 (1958)Google Scholar
  20. Koenig, H.: RNA metabolism in the nervous system: some RNA-dependent functions of neurons and glia. In: Morphological and biochemical correlates of neural activity (eds. Cohen and Snider), pp. 39–56. New York: Hoeber-Harper 1964Google Scholar
  21. Lampert, P. W., Schochet, S. S.: Electron microscopic observations on experimental spongy degeneration of the cerebellar white matter. J. Neuropath. exp. Neurol.27, 210–220 (1968)Google Scholar
  22. Lampert, P. W., O'Brien, J., Garret, R.: Hexachlorophene encephalopathy. Acta neuropath. (Berl.)23, 326–333 (1973)Google Scholar
  23. Reich, E., Goldberg, J. H.: Actinomycin and nucleic acid function. In: Process in nucleic acid research and molecular biology, vol. 3 (eds. J. N. Davidson and W. E. Cohn), pp. 184–235. New York: Academic Press 1964Google Scholar
  24. Rizzuto, N., Gonatas, N. K.: Ultrastructural study of effect of methionine sulfoximine on developing and adult rat cerebral cortex. J. Neuropath. exp. Neurol.33, 237–250 (1974)Google Scholar
  25. Rodriguez, T. G.: Ultrastructural changes in the mouse exocrine pancreas induced by prolonged treatment with Actinomycin D. J. Ultrastruct. Res.19, 116–120 (1967)Google Scholar
  26. Rowley, W. F., Young, I. J.: Experimental myelopathy and encephalopathy induced by Actinomycin D. Recent Advance. Biol. Psychiat.9, 251–269 (1966)Google Scholar
  27. Sammeck, R. Martenson, R. E., Brady, R. O.: Studies of the metabolism of myelin basic proteins in various regions of the central nervous system of immature and adult rats. Brain Res.34, 241–254 (1972)Google Scholar
  28. Simard, R., Duprat, A. M.: Action de l'Actinomycin D sur les ribonucleoproteines nucléaires de cellules d'amphibiens en differentiation. J. Ultrastruct. Res.29, 60–75 (1969)Google Scholar
  29. Smith, M. E.: The turnover of myelin in adult rat. Biochem. Biophys. Acta164, 285–293 (1968)Google Scholar
  30. Smith, M. E.: A regional survey of myelin development: some compositional and metabolic aspects. J. Lipid Res.14, 541–551 (1973)Google Scholar
  31. Suzuki, K., Kikkawa, Y.: Status spongiosus of CNS and hepatic changes induced by cuprizone. Amer. J. Path.54, 307–321 (1969)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • N. Rizzuto
    • 1
  • P. L. Gambetti
    • 1
  1. 1.Division of Neuropathology, Department of PathologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations