Skip to main content
Log in

Dendritic crystal growth in pure4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Dendritic crystal growth of pure hcp and fcc4He was observed at pressures between 210 and 6500 bar. Dendrite morphology depends on fluid supercooling and crystal phase. At large supercooling, dendrites with side arms are observed, whereas at low supercooling dendrites grow without side arms. The morphology of hcp4He dendrites is strongly influenced by crystalline anisotropy. Comparison with present theories of dendrite growth show good agreement with the power law dependencies of velocity, tip radius, and Péclet number on supercooling. Numerically, theory predicts much larger velocities than are observed. The stability parameter σ is found to be much smaller than theoretically predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Vos, B. A. Blaisse, D. R. Boon, W. J. van Scherpenzeel, and R. Kingma,Physica 37, 51 (1967).

    Google Scholar 

  2. J. P. Franck and W. B. Daniels,Phys. Rev. B 24, 2456 (1981).

    Google Scholar 

  3. J. S. Dugdale and J. P. Franck,Phil. Trans. R. Soc. Lond. 257, 1 (1964).

    Google Scholar 

  4. W. W. Mullins and R. F. Sekerka,J. Appl. Phys. 35, 444 (1964).

    Google Scholar 

  5. J. S. Langer,Rev. Mod. Phys. 52, 1 (1980).

    Google Scholar 

  6. V. Laxmanan,Acta Metall. 33, 1023 (1985).

    Google Scholar 

  7. J. S. Langer and H. Müller-Krumbhaar,J. Cryst. Growth 42, 11 (1977).

    Google Scholar 

  8. J. S. Langer and H. Müller-Krumbhaar,Acta Metall. 26, 1681, 1689, 1697 (1978).

    Google Scholar 

  9. J. Stefan,Wied. Ann. 29, 655 (1886).

    Google Scholar 

  10. D. Turnbull,J. Appl. Phys. 21, 1022 (1950).

    Google Scholar 

  11. M. E. Glicksman, R. J. Schaefer, and J. D. Ayers,Met. Trans. 7A, 1747 (1976).

    Google Scholar 

  12. S. C. Huang and M. E. Glicksman,Acta Metall. 29, 701, 717 (1981).

    Google Scholar 

  13. E. McLaughlin, inThermal Conductivity, R. P. Tye, ed. (Academic Press, New York, 1969), Vol. 2, p. 1.

    Google Scholar 

  14. J. F. Kerrisk and W. E. Keller,Phys. Rev. 177, 341 (1969).

    Google Scholar 

  15. W. D. Seward, D. Lazarus, and S. C. Fain,Phys. Rev. 178, 345 (1969).

    Google Scholar 

  16. W. Thomlinson, J. Eckert, and G. Shirane,Phys. Rev. B 18, 1120 (1978).

    Google Scholar 

  17. R. Berman and D. M. Livesey,J. Phys. C 14, L94J5 (1981).

  18. S. C. Fain and D. Lazarus,Phys. Rev. A 1, 1460 (1970).

    Google Scholar 

  19. G. P. Ivantsov,Dokl. Akad. Nauk SSSR 58, 567 (1947).

    Google Scholar 

  20. R. Trivedi,Acta Metall. 18, 287 (1970).

    Google Scholar 

  21. G. E. Nash and M. E. Glicksman,Acta Metall. 22, 1283 (1974).

    Google Scholar 

  22. T. Fujioka, Ph.D. thesis, Carnegie-Mellon University (1978) (as quoted in ref. 5).

  23. L. S. Balfour and S. G. Lipson, inProceedings of the 17th International Conference on Low Temperature Physics, U. Eckern, R. Schmid, W. Weber, and H. Wuhel, eds. (North-Holland, Amsterdam, 1984), p. 507.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franck, J.P., Jung, J. Dendritic crystal growth in pure4He. J Low Temp Phys 64, 165–186 (1986). https://doi.org/10.1007/BF00685127

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00685127

Keywords

Navigation